The Cox-Ingersoll-Ross process under volatility uncertainty

被引:1
|
作者
Akhtari, Bahar [1 ]
Li, Hanwu [2 ,3 ]
机构
[1] Univ Isfahan, Fac Math & Stat, Dept Appl Math & Comp Sci, Esfahan 73441, Iran
[2] Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Binhai Rd 72, Qingdao 266237, Shandong, Peoples R China
[3] Shandong Univ, Frontiers Sci Ctr Nonlinear Expectat, Minist Educ, Binhai Rd 72, Qingdao 266237, Shandong, Peoples R China
关键词
Cox-Ingersoll-Ross process; Volatility uncertainty; Existence and uniqueness; Strong Markov property; DIFFERENTIAL-EQUATIONS DRIVEN; VISCOSITY SOLUTIONS; AMBIGUOUS VOLATILITY; TERM STRUCTURE; SCHEMES; THEOREM;
D O I
10.1016/j.jmaa.2023.127867
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Due to the significance of the Cox-Ingersoll-Ross process in various areas of finance, a wide range of studies and investigations on this model have been carried out. In cases of ambiguity, we characterize it by applying the theory of G- expectation and the associated G- Brownian motion. In this paper, we establish the existence and uniqueness of the solution for the Cox-Ingersoll-Ross process in the presence of volatility uncertainty. In addition, certain properties of the solution are indicated, such as regularity and the strong Markov property. Furthermore, we compute some moments of the Cox-Ingersoll-Ross process by employing an extension of the nonlinear Feynman-Kac theorem. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] THE SEMIGROUP GOVERNING THE GENERALIZED COX-INGERSOLL-ROSS EQUATION
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    Mininni, Rosa Maria
    Romanelli, Silvia
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2016, 21 (3-4) : 235 - 264
  • [22] THE RUNNING MAXIMUM OF THE COX-INGERSOLL-ROSS PROCESS WITH SOME PROPERTIES OF THE KUMMER FUNCTION
    Gerhold, Stefan
    Hubalek, Friedrich
    Paris, Richard B.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2022, 13 (02): : 1 - 18
  • [23] Embedding the Vasicek model into the Cox-Ingersoll-Ross model
    Sinkala, W.
    Leach, P. G. L.
    O'Hara, J. G.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (02) : 152 - 159
  • [24] Parameter estimation for Cox-Ingersoll-Ross process with two-sided reflections
    Shi, Yiwei
    Shu, Huisheng
    Wang, Chunyang
    Zhang, Xuekang
    STATISTICS & PROBABILITY LETTERS, 2025, 221
  • [26] SHARP LARGE DEVIATIONS FOR THE DRIFT PARAMETER OF THE EXPLOSIVE COX-INGERSOLL-ROSS PROCESS
    de Chaumaray, M. du Roy
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2020, 65 (03) : 454 - 469
  • [27] An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process
    Dereich, Steffen
    Neuenkirch, Andreas
    Szpruch, Lukasz
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2140): : 1105 - 1115
  • [28] EXPONENTIAL INTEGRABILITY PROPERTIES OF EULER DISCRETIZATION SCHEMES FOR THE COX-INGERSOLL-ROSS PROCESS
    Cozma, Andrei
    Reisinger, Christoph
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (10): : 3359 - 3377
  • [29] Cox-Ingersoll-Ross model for wind speed modeling and forecasting
    Bensoussan, Alain
    Brouste, Alexandre
    WIND ENERGY, 2016, 19 (07) : 1355 - 1365
  • [30] Optimal guaranteed estimation methods for the Cox-Ingersoll-Ross models
    Ben Alaya, Mohamed
    Ngo, Thi Bao Tram
    Pergamenchtchikov, Serguei
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2025,