EXPONENTIAL INTEGRABILITY PROPERTIES OF EULER DISCRETIZATION SCHEMES FOR THE COX-INGERSOLL-ROSS PROCESS

被引:8
|
作者
Cozma, Andrei [1 ]
Reisinger, Christoph [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Cox-Ingersoll-Ross process; exponential integrability; explicit Euler scheme; implicit Euler scheme; stochastic volatility model; STOCHASTIC VOLATILITY; CONVERGENCE; CIR; OPTIONS; MODEL;
D O I
10.3934/dcdsb.2016101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study exponential integrability properties of the Cox-Ingersoll Ross (CIR) process and its Euler-Maruyama discretizations with various types of truncation and reflection at 0. These properties play a key role in establishing the finiteness of moments and the strong convergence of numerical approximations for a class of stochastic differential equations arising in finance. We prove that both implicit and explicit Euler-Maruyama discretizations for the CIR process preserve the exponential integrability of the exact solution for a wide range of parameters, and find lower bounds on the explosion time.
引用
收藏
页码:3359 / 3377
页数:19
相关论文
共 50 条
  • [1] UNIFORM APPROXIMATION OF THE COX-INGERSOLL-ROSS PROCESS
    Milstein, Grigori N.
    Schoenmakers, John
    ADVANCES IN APPLIED PROBABILITY, 2015, 47 (04) : 1132 - 1156
  • [2] An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process
    Dereich, Steffen
    Neuenkirch, Andreas
    Szpruch, Lukasz
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2140): : 1105 - 1115
  • [3] Generalisation of fractional Cox-Ingersoll-Ross process
    Mpanda, Marc Mukendi
    Mukeru, Safari
    Mulaudzi, Mmboniseni
    RESULTS IN APPLIED MATHEMATICS, 2022, 15
  • [4] The Cox-Ingersoll-Ross process under volatility uncertainty
    Akhtari, Bahar
    Li, Hanwu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [5] Local asymptotic properties for Cox-Ingersoll-Ross process with discrete observations
    Ben Alaya, Mohamed
    Kebaier, Ahmed
    Tran, Ngoc Khue
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (04) : 1401 - 1464
  • [6] An adaptive splitting method for the Cox-Ingersoll-Ross process
    Kelly, Conall
    Lord, Gabriel J.
    APPLIED NUMERICAL MATHEMATICS, 2023, 186 : 252 - 273
  • [7] Low-dimensional Cox-Ingersoll-Ross process
    Mishura, Yuliya
    Pilipenko, Andrey
    Yurchenko-Tytarenko, Anton
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2024, 96 (05) : 1530 - 1550
  • [8] Analyticity of the Cox-Ingersoll-Ross semigroup
    Fornaro, S.
    Metafune, G.
    POSITIVITY, 2020, 24 (04) : 915 - 931
  • [9] Estimation in the Cox-Ingersoll-Ross model
    Overbeck, L
    Ryden, T
    ECONOMETRIC THEORY, 1997, 13 (03) : 430 - 461
  • [10] THE RUNNING MAXIMUM OF THE COX-INGERSOLL-ROSS PROCESS WITH SOME PROPERTIES OF THE KUMMER FUNCTION
    Gerhold, Stefan
    Hubalek, Friedrich
    Paris, Richard B.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2022, 13 (02): : 1 - 18