From Connectivity to Controllability: Unraveling the Brain Biomarkers of Major Depressive Disorder

被引:1
|
作者
Pan, Chunyu [1 ]
Ma, Ying [2 ]
Wang, Lifei [3 ,4 ]
Zhang, Yan [2 ]
Wang, Fei [3 ,4 ,5 ]
Zhang, Xizhe [3 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110169, Peoples R China
[2] Nanjing Med Univ, Sch Biomed Engn & Informat, Nanjing 210033, Peoples R China
[3] Nanjing Med Univ, Affiliated Brain Hosp, Dept Psychiat, Early Intervent Unit, Nanjing 210024, Peoples R China
[4] Nanjing Med Univ, Funct Brain Imaging Inst, Nanjing 210024, Peoples R China
[5] Nanjing Med Univ, Sch Publ Hlth, Dept Mental Hlth, Nanjing 211166, Peoples R China
基金
中国国家自然科学基金;
关键词
brain network; network controllability; major depressive disorder; fMRI biomarkers; STATE FUNCTIONAL CONNECTIVITY; SUBGENUAL ANTERIOR CINGULATE; DEFAULT MODE NETWORK; BIPOLAR DISORDER; STIMULATION; CIRCUIT;
D O I
10.3390/brainsci14050509
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Major Depressive Disorder (MDD) is a significant neurological condition associated with aberrations in brain functional networks. Traditional studies have predominantly analyzed these from a network topology perspective. However, given the brain's dynamic and complex nature, exploring its mechanisms from a network control standpoint provides a fresh and insightful framework. This research investigates the integration of network controllability and machine learning to pinpoint essential biomarkers for MDD using functional magnetic resonance imaging (fMRI) data. By employing network controllability methods, we identify crucial brain regions that are instrumental in facilitating transitions between brain states. These regions demonstrate the brain's ability to navigate various functional states, emphasizing the utility of network controllability metrics as potential biomarkers. Furthermore, these metrics elucidate the complex dynamics of MDD and support the development of precision medicine strategies that incorporate machine learning to improve the precision of diagnostics and the efficacy of treatments. This study underscores the value of merging machine learning with network neuroscience to craft personalized interventions that align with the unique pathological profiles of individuals, ultimately enhancing the management and treatment of MDD.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Brain aging in major depressive disorder
    Han, L.
    Schnack, H.
    Brouwer, R.
    Veltman, D.
    Van der Wee, N.
    Van Tol, M. J.
    Aghajani, M.
    Penninx, B.
    EUROPEAN PSYCHIATRY, 2021, 64 : S63 - S63
  • [42] Structural alterations of the brain preceded functional alterations in major depressive disorder patients: Evidence from multimodal connectivity
    Yao, Zhijun
    Zou, Ying
    Zheng, Weihao
    Zhang, Zhe
    Li, Yuan
    Yu, Yue
    Zhang, Zicheng
    Fu, Yu
    Shi, Jie
    Zhang, Wenwen
    Wu, Xia
    Hu, Bin
    JOURNAL OF AFFECTIVE DISORDERS, 2019, 253 : 107 - 117
  • [43] Peripheral biomarkers to predict the diagnosis of bipolar disorder from major depressive disorder in adolescents
    Wu, Xiaohui
    Niu, Zhiang
    Zhu, Yuncheng
    Shi, Yifan
    Qiu, Hong
    Gu, Wenjie
    Liu, Hongmei
    Zhao, Jie
    Yang, Lu
    Wang, Yun
    Liu, Tiebang
    Xia, Yong
    Yang, Yan
    Chen, Jun
    Fang, Yiru
    EUROPEAN ARCHIVES OF PSYCHIATRY AND CLINICAL NEUROSCIENCE, 2022, 272 (05) : 817 - 826
  • [44] Peripheral biomarkers to predict the diagnosis of bipolar disorder from major depressive disorder in adolescents
    Xiaohui Wu
    Zhiang Niu
    Yuncheng Zhu
    Yifan Shi
    Hong Qiu
    Wenjie Gu
    Hongmei Liu
    Jie Zhao
    Lu Yang
    Yun Wang
    Tiebang Liu
    Yong Xia
    Yan Yang
    Jun Chen
    Yiru Fang
    European Archives of Psychiatry and Clinical Neuroscience, 2022, 272 : 817 - 826
  • [45] The Role of Educational Attainment and Brain Morphology in Major Depressive Disorder: Findings From the ENIGMA Major Depressive Disorder Consortium
    Whittle, Sarah
    Rakesh, Divyangana
    Schmaal, Lianne
    Veltman, Dick J.
    Thompson, Paul M.
    Singh, Aditya
    Gonul, Ali Saffet
    Aleman, Andre
    Demir, Aslihan Uyar
    Krug, Axel
    Mwangi, Benson
    Kramer, Bernd
    Baune, Bernhard T.
    Stein, Dan J.
    Grotegerd, Dominik
    Pomarol-Clotet, Edith
    Rodriguez-Cano, Elena
    Melloni, Elisa
    Benedetti, Francesco
    Stein, Frederike
    Grabe, Hans J.
    Volzke, Henry
    Gotlib, Ian H.
    Nenadic, Igor
    Soares, Jair C.
    Repple, Jonathan
    Sim, Kang
    Brosch, Katharina
    Wittfeld, Katharina
    Berger, Klaus
    Hermesdorf, Marco
    Portella, Maria J.
    Sacchet, Matthew D.
    Wu, Mon-Ju
    Opel, Nils
    Groenewold, Nynke A.
    Gruber, Oliver
    Fuentes-Claramonte, Paola
    Salvador, Raymond
    Goya-Maldonado, Roberto
    Sarro, Salvador
    Poletti, Sara
    Meinert, Susanne L.
    Kircher, Tilo
    Dannlowski, Udo
    Pozzi, Elena
    JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE, 2022, 131 (06): : 664 - 673
  • [46] Thalamocortical connectivity in electroconvulsive therapy for major depressive disorder
    Wei, Qiang
    Bai, Tongjian
    Brown, Elliot C.
    Xie, Wen
    Chen, Yang
    Ji, Gongjun
    Ramasubbu, Rajamannar
    Tian, Yanghua
    Wang, Kai
    JOURNAL OF AFFECTIVE DISORDERS, 2020, 264 : 163 - 171
  • [47] The Effect of Ketamine on Electrophysiological Connectivity in Major Depressive Disorder
    Nugent, Allison C.
    Ballard, Elizabeth D.
    Gilbert, Jessica R.
    Tewarie, Prejaas K.
    Brookes, Matthew J.
    Zarate, Carlos A., Jr.
    FRONTIERS IN PSYCHIATRY, 2020, 11
  • [48] Neuronal connectivity in major depressive disorder: a systematic review
    Helm, Katharina
    Viol, Kathrin
    Weiger, Thomas M.
    Tass, Peter A.
    Grefkes, Christian
    del Monte, Damir
    Schiepek, Guenter
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2018, 14 : 2715 - 2737
  • [49] Molecular connectivity disruptions in males with major depressive disorder
    Pillai, Rajapillai L., I
    Zhang, Mengru
    Yang, Jie
    Mann, J. John
    Oquendo, Maria A.
    Parsey, Ramin, V
    DeLorenzo, Christine
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2019, 39 (08): : 1623 - 1634
  • [50] Distinct homotopic functional connectivity patterns of the amygdalar sub-regions as biomarkers in major depressive disorder
    Harel, Maayan
    Amiaz, Revital
    Raizman, Reut
    Leibovici, Anat
    Golan, Yael
    Mesika, David
    Bodini, Raffaella
    Tsarfaty, Galia
    Weiser, Mark
    Livny, Abigail
    JOURNAL OF AFFECTIVE DISORDERS, 2024, 365 : 285 - 292