From Connectivity to Controllability: Unraveling the Brain Biomarkers of Major Depressive Disorder

被引:1
|
作者
Pan, Chunyu [1 ]
Ma, Ying [2 ]
Wang, Lifei [3 ,4 ]
Zhang, Yan [2 ]
Wang, Fei [3 ,4 ,5 ]
Zhang, Xizhe [3 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110169, Peoples R China
[2] Nanjing Med Univ, Sch Biomed Engn & Informat, Nanjing 210033, Peoples R China
[3] Nanjing Med Univ, Affiliated Brain Hosp, Dept Psychiat, Early Intervent Unit, Nanjing 210024, Peoples R China
[4] Nanjing Med Univ, Funct Brain Imaging Inst, Nanjing 210024, Peoples R China
[5] Nanjing Med Univ, Sch Publ Hlth, Dept Mental Hlth, Nanjing 211166, Peoples R China
基金
中国国家自然科学基金;
关键词
brain network; network controllability; major depressive disorder; fMRI biomarkers; STATE FUNCTIONAL CONNECTIVITY; SUBGENUAL ANTERIOR CINGULATE; DEFAULT MODE NETWORK; BIPOLAR DISORDER; STIMULATION; CIRCUIT;
D O I
10.3390/brainsci14050509
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Major Depressive Disorder (MDD) is a significant neurological condition associated with aberrations in brain functional networks. Traditional studies have predominantly analyzed these from a network topology perspective. However, given the brain's dynamic and complex nature, exploring its mechanisms from a network control standpoint provides a fresh and insightful framework. This research investigates the integration of network controllability and machine learning to pinpoint essential biomarkers for MDD using functional magnetic resonance imaging (fMRI) data. By employing network controllability methods, we identify crucial brain regions that are instrumental in facilitating transitions between brain states. These regions demonstrate the brain's ability to navigate various functional states, emphasizing the utility of network controllability metrics as potential biomarkers. Furthermore, these metrics elucidate the complex dynamics of MDD and support the development of precision medicine strategies that incorporate machine learning to improve the precision of diagnostics and the efficacy of treatments. This study underscores the value of merging machine learning with network neuroscience to craft personalized interventions that align with the unique pathological profiles of individuals, ultimately enhancing the management and treatment of MDD.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group
    Schmaal, L.
    Veltman, D. J.
    van Erp, T. G. M.
    Saemann, P. G.
    Frodl, T.
    Jahanshad, N.
    Loehrer, E.
    Tiemeier, H.
    Hofman, A.
    Niessen, W. J.
    Vernooij, M. W.
    Ikram, M. A.
    Wittfeld, K.
    Grabe, H. J.
    Block, A.
    Hegenscheid, K.
    Voelzke, H.
    Hoehn, D.
    Czisch, M.
    Lagopoulos, J.
    Hatton, S. N.
    Hickie, I. B.
    Goya-Maldonado, R.
    Kraemer, B.
    Gruber, O.
    Couvy-Duchesne, B.
    Renteria, M. E.
    Strike, L. T.
    Mills, N. T.
    de Zubicaray, G. I.
    McMahon, K. L.
    Medland, S. E.
    Martin, N. G.
    Gillespie, N. A.
    Wright, M. J.
    Hall, G. B.
    MacQueen, G. M.
    Frey, E. M.
    Carballedo, A.
    van Velzen, L. S.
    van Tol, M. J.
    van der Wee, N. J.
    Veer, I. M.
    Walter, H.
    Schnell, K.
    Schramm, E.
    Normann, C.
    Schoepf, D.
    Konrad, C.
    Zurowski, B.
    MOLECULAR PSYCHIATRY, 2016, 21 (06) : 806 - 812
  • [32] Biomarkers for Major Depressive Disorder: Economic Considerations
    Bogavac-Stanojevic, Natasa
    Lakic, Dragana
    DRUG DEVELOPMENT RESEARCH, 2016, 77 (07) : 374 - 378
  • [33] Plasma biomarkers to diagnose major depressive disorder
    Ohashi, Y.
    Shinoda, K.
    Sato, H.
    Ishikawa, T.
    Kawamura, N.
    INTERNATIONAL JOURNAL OF PSYCHIATRY IN CLINICAL PRACTICE, 2010, 14 : 31 - 31
  • [34] Identifying circulating biomarkers for major depressive disorder
    Zhang, En
    Huang, Zhongfei
    Zang, Zongjun
    Qiao, Xin
    Yan, Jiaxin
    Shao, Xuefei
    FRONTIERS IN PSYCHIATRY, 2023, 14
  • [35] Biomarkers Differentiating Major Depressive Disorder Subtypes
    Manji, Husseini K.
    Yieh, Lynn
    Ye, Jieping
    Liu, Yashu
    Yang, Tao
    Farnum, Michael
    Yao, Xiang
    Talloen, Willem
    Steckler, Thomas
    Drinkenberg, Pim
    Peeters, Pieter J.
    Narayan, Vaibhav
    Wittenberg, Gayle
    NEUROPSYCHOPHARMACOLOGY, 2013, 38 : S262 - S263
  • [36] Protein Biomarkers in Major Depressive Disorder: An Update
    Woods, Alisa G.
    Wormwood, Kelly L.
    Iosifescu, Dan V.
    Murrough, James
    Darie, Costel C.
    ADVANCEMENTS OF MASS SPECTROMETRY IN BIOMEDICAL RESEARCH, 2ND EDITION, 2019, 1140 : 585 - 600
  • [37] Editorial for "Diagnosis of Major Depressive Disorder Based on Individualized Brain Functional and Structural Connectivity"
    Koubiyr, Ismail
    Tourdias, Thomas
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2025, 61 (04) : 1726 - 1727
  • [38] Disrupted Brain Entropy And Functional Connectivity Patterns Of Thalamic Subregions In Major Depressive Disorder
    Xue, Shao-Wei
    Wang, Donglin
    Tan, Zhonglin
    Wang, Yan
    Lian, Zhenzhen
    Sun, Yunkai
    Hu, Xiaojiao
    Wang, Xiaole
    Zhou, Xin
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2019, 15 : 2629 - 2638
  • [39] Modulatory interactions of resting-state brain functional connectivity in major depressive disorder
    Tu, Zhe
    Jia, Yuan Yuan
    Wang, Tao
    Qu, Hang
    Pan, Jun Xi
    Jie, Jie
    Xu, Xiao Yan
    Wang, Hai Yang
    Xie, Peng
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2018, 14 : 2461 - 2472
  • [40] Linking individual variability in functional brain connectivity to polygenic risk in major depressive disorder
    Hou, Zhuoliang
    Jiang, Wenhao
    Li, Fan
    Liu, Xiaoyun
    Hou, Zhenghua
    Yin, Yingying
    Zhang, Haisan
    Zhang, Hongxing
    Xie, Chunming
    Zhang, Zhijun
    Kong, Youyong
    Yuan, Yonggui
    JOURNAL OF AFFECTIVE DISORDERS, 2023, 329 : 55 - 63