From Connectivity to Controllability: Unraveling the Brain Biomarkers of Major Depressive Disorder

被引:1
|
作者
Pan, Chunyu [1 ]
Ma, Ying [2 ]
Wang, Lifei [3 ,4 ]
Zhang, Yan [2 ]
Wang, Fei [3 ,4 ,5 ]
Zhang, Xizhe [3 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110169, Peoples R China
[2] Nanjing Med Univ, Sch Biomed Engn & Informat, Nanjing 210033, Peoples R China
[3] Nanjing Med Univ, Affiliated Brain Hosp, Dept Psychiat, Early Intervent Unit, Nanjing 210024, Peoples R China
[4] Nanjing Med Univ, Funct Brain Imaging Inst, Nanjing 210024, Peoples R China
[5] Nanjing Med Univ, Sch Publ Hlth, Dept Mental Hlth, Nanjing 211166, Peoples R China
基金
中国国家自然科学基金;
关键词
brain network; network controllability; major depressive disorder; fMRI biomarkers; STATE FUNCTIONAL CONNECTIVITY; SUBGENUAL ANTERIOR CINGULATE; DEFAULT MODE NETWORK; BIPOLAR DISORDER; STIMULATION; CIRCUIT;
D O I
10.3390/brainsci14050509
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Major Depressive Disorder (MDD) is a significant neurological condition associated with aberrations in brain functional networks. Traditional studies have predominantly analyzed these from a network topology perspective. However, given the brain's dynamic and complex nature, exploring its mechanisms from a network control standpoint provides a fresh and insightful framework. This research investigates the integration of network controllability and machine learning to pinpoint essential biomarkers for MDD using functional magnetic resonance imaging (fMRI) data. By employing network controllability methods, we identify crucial brain regions that are instrumental in facilitating transitions between brain states. These regions demonstrate the brain's ability to navigate various functional states, emphasizing the utility of network controllability metrics as potential biomarkers. Furthermore, these metrics elucidate the complex dynamics of MDD and support the development of precision medicine strategies that incorporate machine learning to improve the precision of diagnostics and the efficacy of treatments. This study underscores the value of merging machine learning with network neuroscience to craft personalized interventions that align with the unique pathological profiles of individuals, ultimately enhancing the management and treatment of MDD.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group
    Han, Laura K. M.
    Dinga, Richard
    Hahn, Tim
    Ching, Christopher R. K.
    Eyler, Lisa T.
    Aftanas, Lyubomir
    Aghajani, Moji
    Aleman, Andre
    Baune, Bernhard T.
    Berger, Klaus
    Brak, Ivan
    Busatto Filho, Geraldo
    Carballedo, Angela
    Connolly, Colm G.
    Couvy-Duchesne, Baptiste
    Cullen, Kathryn R.
    Dannlowski, Udo
    Davey, Christopher G.
    Dima, Danai
    Duran, Fabio L. S.
    Enneking, Verena
    Filimonova, Elena
    Frenzel, Stefan
    Frodl, Thomas
    Fu, Cynthia H. Y.
    Godlewska, Beata R.
    Gotlib, Ian H.
    Grabe, Hans J.
    Groenewold, Nynke A.
    Grotegerd, Dominik
    Gruber, Oliver
    Hall, Geoffrey B.
    Harrison, Ben J.
    Hatton, Sean N.
    Hermesdorf, Marco
    Hickie, Ian B.
    Ho, Tiffany C.
    Hosten, Norbert
    Jansen, Andreas
    Kaehler, Claas
    Kircher, Tilo
    Klimes-Dougan, Bonnie
    Kraemer, Bernd
    Krug, Axel
    Lagopoulos, Jim
    Leenings, Ramona
    MacMaster, Frank P.
    MacQueen, Glenda
    McIntosh, Andrew
    McLellan, Quinn
    MOLECULAR PSYCHIATRY, 2021, 26 (09) : 5124 - 5139
  • [22] Estrogen, stress and the brain: progress toward unraveling gender discrepancies in major depressive disorder
    Shansky, Rebecca M.
    EXPERT REVIEW OF NEUROTHERAPEUTICS, 2009, 9 (07) : 967 - 973
  • [23] Frontostriatal functional connectivity in major depressive disorder
    Furman, Daniella J.
    Hamilton, J. Paul
    Gotlib, Ian H.
    BIOLOGY OF MOOD & ANXIETY DISORDERS, 2011, 1 (01):
  • [24] Dysfunction in sensorimotor and default mode networks in major depressive disorder with insights from global brain connectivity
    Zhang, Yajuan
    Huang, Chu-Chung
    Zhao, Jiajia
    Liu, Yuchen
    Xia, Mingrui
    Wang, Xiaoqin
    Wei, Dongtao
    Chen, Yuan
    Liu, Bangshan
    Zheng, Yanting
    Wu, Yankun
    Chen, Taolin
    Cheng, Yuqi
    Xu, Xiufeng
    Gong, Qiyong
    Si, Tianmei
    Qiu, Shijun
    Cheng, Jingliang
    Tang, Yanqing
    Wang, Fei
    Qiu, Jiang
    Xie, Peng
    Li, Lingjiang
    He, Yong
    Lin, Ching-Po
    DIDA-Major Depressive Disorder Working Grp, Chun-Yi Zac
    Lo, Chun-Yi Zac
    NATURE MENTAL HEALTH, 2024, 2 (11): : 1371 - 1381
  • [25] Gutted! Unraveling the Role of the Microbiome in Major Depressive Disorder
    Bastiaanssen, Thomaz F. S.
    Cussotto, Sofia
    Claesson, Marcus J.
    Clarke, Gerard
    Dinan, Timothy G.
    Cryan, John F.
    HARVARD REVIEW OF PSYCHIATRY, 2020, 28 (01) : 26 - 39
  • [26] Brain SPECT perfusion and PET metabolism as discordant biomarkers in major depressive disorder
    Guedj, E.
    Richieri, R.
    Boyer, L.
    Korchia, T.
    Fond, G.
    Lancon, C.
    Tastevin, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (SUPPL 1) : S446 - S446
  • [27] Brain SPECT perfusion and PET metabolism as discordant biomarkers in major depressive disorder
    Maud Tastevin
    Laurent Boyer
    Theo Korchia
    Guillaume Fond
    Christophe Lançon
    Raphaëlle Richieri
    Eric Guedj
    EJNMMI Research, 10
  • [28] Brain SPECT perfusion and PET metabolism as discordant biomarkers in major depressive disorder
    Tastevin, Maud
    Boyer, Laurent
    Korchia, Theo
    Fond, Guillaume
    Lancon, Christophe
    Richieri, Raphaelle
    Guedj, Eric
    EJNMMI RESEARCH, 2020, 10 (01)
  • [29] Subcortical Brain Alterations in Major Depressive Disorder: Findings from the ENIGMA Major Depressive Disorder Working Group
    Schmaal, Lianne
    Veltman, Dick J.
    van Erp, Theo G. M.
    Penninx, Brenda W. J. H.
    Thompson, Paul M.
    Hibar, Derrek P.
    BIOLOGICAL PSYCHIATRY, 2015, 77 (09)
  • [30] Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group
    L Schmaal
    D J Veltman
    T G M van Erp
    P G Sämann
    T Frodl
    N Jahanshad
    E Loehrer
    H Tiemeier
    A Hofman
    W J Niessen
    M W Vernooij
    M A Ikram
    K Wittfeld
    H J Grabe
    A Block
    K Hegenscheid
    H Völzke
    D Hoehn
    M Czisch
    J Lagopoulos
    S N Hatton
    I B Hickie
    R Goya-Maldonado
    B Krämer
    O Gruber
    B Couvy-Duchesne
    M E Rentería
    L T Strike
    N T Mills
    G I de Zubicaray
    K L McMahon
    S E Medland
    N G Martin
    N A Gillespie
    M J Wright
    G B Hall
    G M MacQueen
    E M Frey
    A Carballedo
    L S van Velzen
    M J van Tol
    N J van der Wee
    I M Veer
    H Walter
    K Schnell
    E Schramm
    C Normann
    D Schoepf
    C Konrad
    B Zurowski
    Molecular Psychiatry, 2016, 21 : 806 - 812