Concentration of hitting times in Erdős-Rényi graphs

被引:2
|
作者
Ottolini, Andrea [1 ]
Steinerberger, Stefan [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
Erd & odblac; s-R & eacute; nyi graphs; hitting time; random walk;
D O I
10.1002/jgt.23119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Erd & odblac;s-R & eacute;nyi graphs G(n,p) $G(n,p)$ for 0<p<1 $0\lt p\lt 1$ fixed and n ->infinity $n\to \infty $ and study the expected number of steps, Hwv ${H}_{wv}$, that a random walk started in w $w$ needs to first arrive in v $v$. A natural guess is that an Erd & odblac;s-R & eacute;nyi random graph is so homogeneous that it does not really distinguish between vertices and Hwv=(1+o(1))n ${H}_{wv}=(1+o(1))n$. L & ouml;we-Terveer established a CLT for the Mean Starting Hitting Time suggesting Hwv=n +/- O(n) ${H}_{wv}=n\pm {\mathscr{O}}(\sqrt{n})$. We prove the existence of a strong concentration phenomenon: Hwv ${H}_{wv}$ is given, up to a very small error of size less than or similar to(logn)3/2/n $\lesssim {(\mathrm{log}n)}<^>{3\unicode{x02215}2}\unicode{x02215}\sqrt{n}$, by an explicit simple formula involving only the total number of edges divided by E divided by $| E| $, the degree deg(v) $\text{deg}(v)$ and the distance d(v,w) $d(v,w)$.
引用
收藏
页码:245 / 262
页数:18
相关论文
共 50 条
  • [1] Respondent-Driven Sampling on Sparse Erdös-Rényi Graphs
    Anthony Cousien
    Jean-Stéphane Dhersin
    Viet Chi Tran
    Thi Phuong Thuy Vo
    Acta Mathematica Vietnamica, 2023, 48 : 479 - 513
  • [2] Respondent-Driven Sampling on Sparse Erdös-Rényi Graphs
    Cousien, Anthony
    Dhersin, Jean-Stephane
    Tran, Viet Chi
    Vo, Thi Phuong Thuy
    ACTA MATHEMATICA VIETNAMICA, 2023, 48 (03) : 479 - 513
  • [3] Multifractal phase in the weighted adjacency matrices of random Erdös-Rényi graphs
    Cugliandolo, Leticia F.
    Schehr, Gregory
    Tarzia, Marco
    Venturelli, Davide
    PHYSICAL REVIEW B, 2024, 110 (17)
  • [4] Chemically inspired Erdős-Rényi hypergraphs
    Garcia-Chung, Angel
    Bermudez-Montana, Marisol
    Stadler, Peter F.
    Jost, Juergen
    Restrepo, Guillermo
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 62 (06) : 1357 - 1383
  • [5] Correction: Eigenvalues Outside the Bulk of Inhomogeneous Erdős-Rényi Random Graphs
    Arijit Chakrabarty
    Sukrit Chakraborty
    Rajat Subhra Hazra
    Journal of Statistical Physics, 191
  • [6] Analysis of a Canonical Labeling Algorithm for the Alignment of Correlated ErdÅ's-Rényi Graphs
    Dai O.E.
    Cullina D.
    Kiyavash N.
    Grossglauser M.
    Performance Evaluation Review, 2019, 47 (01): : 96 - 97
  • [7] On Reversible Cascades in Scale-Free and Erdős-Rényi Random Graphs
    Ching-Lueh Chang
    Chao-Hong Wang
    Theory of Computing Systems, 2013, 52 : 303 - 318
  • [8] Faster algorithms for the alignment of sparse correlated Erdős-Rényi random graphs
    Muratori, Andrea
    Semerjian, Guilhem
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (11):
  • [9] Large Deviation Principle for the Maximal Eigenvalue of Inhomogeneous Erdős-Rényi Random Graphs
    Arijit Chakrabarty
    Rajat Subhra Hazra
    Frank den Hollander
    Matteo Sfragara
    Journal of Theoretical Probability, 2022, 35 : 2413 - 2441
  • [10] Paradise-disorder transition in structural balance dynamics on Erdös-Rényi graphs
    Mohandas, Krishnadas
    Suchecki, Krzysztof
    Holyst, Janusz A.
    PHYSICAL REVIEW E, 2025, 111 (02)