Multifrequency nonlinear Schrodinger equation

被引:0
|
作者
Castello-Lurbe, David [1 ,2 ]
Silvestre, Enrique [1 ,3 ]
Andres, Miguel V. [1 ,2 ]
机构
[1] Univ Valencia, Inst Univ Ciencies Mat, Catedrat Agustin Escardino 9, Paterna 46980, Spain
[2] Univ Valencia, Dept Fis Aplicada & Electromagnetisme, Dr Moliner 50, Burjassot 46100, Spain
[3] Univ Valencia, Dept Opt & Optometria & Ciencies Visio, Dr Moliner 50, Burjassot 46100, Spain
基金
欧盟地平线“2020”;
关键词
PULSE-PROPAGATION; SUPERCONTINUUM GENERATION; WAVE-GUIDES; DISPERSION; MODE;
D O I
10.1364/OL.528926
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The multifrequency character of nonlinearity dispersion is often dismissed because, in principle, it increases the computational load exceedingly rendering an impractical modeling and, typically, nonlinearities barely depend on frequency. Nonetheless, nonlinearity dispersion has recently enabled a solution to a long-standing challenge in optics. To explore the potential of this research avenue on solid theoretical grounds, we derive a propagation equation accounting for multifrequency nonlinearities rigorously that maintains the computational advantages of conventional models. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:4713 / 4716
页数:4
相关论文
共 50 条
  • [41] EXACT QUANTIZATION OF NONLINEAR SCHRODINGER EQUATION
    KAUP, DJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (04): : 549 - 549
  • [42] Solution of the nonlinear Schrodinger equation (1
    Segovia Chaves, Francis
    Cabrera, Emilse
    REDES DE INGENIERIA-ROMPIENDO LAS BARRERAS DEL CONOCIMIENTO, 2015, 6 (02): : 26 - 32
  • [43] Open boundaries for the nonlinear Schrodinger equation
    Soffer, A.
    Stucchio, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) : 1218 - 1232
  • [44] Envelope solutions to nonlinear Schrodinger equation
    Li, XZ
    Zhang, JL
    Wang, YM
    Wang, ML
    ACTA PHYSICA SINICA, 2004, 53 (12) : 4045 - 4051
  • [45] Solitons of the generalized nonlinear Schrodinger equation
    Tsoy, Eduard N.
    Suyunov, Laziz A.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 414
  • [46] Exact Solutions to the Nonlinear Schrodinger Equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 1 - +
  • [47] Collapse in the nonlocal nonlinear Schrodinger equation
    Maucher, F.
    Skupin, S.
    Krolikowski, W.
    NONLINEARITY, 2011, 24 (07) : 1987 - 2001
  • [48] RATIONAL MULTISOLUTIONS OF SCHRODINGER NONLINEAR EQUATION
    ELEONSKII, VM
    KRICHEVER, IM
    KULAGIN, NE
    DOKLADY AKADEMII NAUK SSSR, 1986, 287 (03): : 606 - 610
  • [49] Nonlinear Schrodinger equation with a point defect
    Fukuizumi, Reika
    Ohta, Masahito
    Ozawa, Tohru
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (05): : 837 - 845
  • [50] Stroboscopic Averaging for the Nonlinear Schrodinger Equation
    Castella, F.
    Chartier, Ph.
    Mehats, F.
    Murua, A.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (02) : 519 - 559