Multifrequency nonlinear Schrodinger equation

被引:0
|
作者
Castello-Lurbe, David [1 ,2 ]
Silvestre, Enrique [1 ,3 ]
Andres, Miguel V. [1 ,2 ]
机构
[1] Univ Valencia, Inst Univ Ciencies Mat, Catedrat Agustin Escardino 9, Paterna 46980, Spain
[2] Univ Valencia, Dept Fis Aplicada & Electromagnetisme, Dr Moliner 50, Burjassot 46100, Spain
[3] Univ Valencia, Dept Opt & Optometria & Ciencies Visio, Dr Moliner 50, Burjassot 46100, Spain
基金
欧盟地平线“2020”;
关键词
PULSE-PROPAGATION; SUPERCONTINUUM GENERATION; WAVE-GUIDES; DISPERSION; MODE;
D O I
10.1364/OL.528926
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The multifrequency character of nonlinearity dispersion is often dismissed because, in principle, it increases the computational load exceedingly rendering an impractical modeling and, typically, nonlinearities barely depend on frequency. Nonetheless, nonlinearity dispersion has recently enabled a solution to a long-standing challenge in optics. To explore the potential of this research avenue on solid theoretical grounds, we derive a propagation equation accounting for multifrequency nonlinearities rigorously that maintains the computational advantages of conventional models. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:4713 / 4716
页数:4
相关论文
共 50 条
  • [31] Comparison of soliton solutions of the nonlinear Schrodinger equation and the nonlinear amplitude equation
    Dakova, A.
    Dakova, D.
    Kovachev, L.
    18TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2015, 9447
  • [32] A splitting method for the nonlinear Schrodinger equation
    Ignat, Liviu I.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (07) : 3022 - 3046
  • [33] Weak collapse in the nonlinear Schrodinger equation
    Ovchinnikov, YN
    JETP LETTERS, 1999, 69 (05) : 418 - 422
  • [34] On a nonlinear Schrodinger equation with indefinite potential
    Huang, Yisheng
    Liu, Zeng
    Wu, Yuanze
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 : 161 - 170
  • [35] An identification problem for a nonlinear Schrodinger equation
    Yagubov, GY
    Musaeva, MA
    DIFFERENTIAL EQUATIONS, 1997, 33 (12) : 1695 - 1702
  • [36] An Identification Problem For Nonlinear Schrodinger Equation
    Aksoy, Nigar Yildirim
    Yagub, Gabil
    Aksoy, Eray
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [37] Nonlinear Schrodinger equation with a random potential
    Bourgain, Jean
    ILLINOIS JOURNAL OF MATHEMATICS, 2006, 50 (01) : 183 - 188
  • [38] THE STOCHASTIC DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Zhong, Sijia
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2017, 30 (1-2) : 81 - 100
  • [39] ON A RELATIVISTIC NONLINEAR SCHRODINGER-EQUATION
    DEBOUARD, A
    HAYASHI, N
    SAUT, JC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (02): : 175 - 178
  • [40] Geometric integrators for the nonlinear Schrodinger equation
    Islas, AL
    Karpeev, DA
    Schober, CM
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 173 (01) : 116 - 148