Multifrequency nonlinear Schrodinger equation

被引:0
|
作者
Castello-Lurbe, David [1 ,2 ]
Silvestre, Enrique [1 ,3 ]
Andres, Miguel V. [1 ,2 ]
机构
[1] Univ Valencia, Inst Univ Ciencies Mat, Catedrat Agustin Escardino 9, Paterna 46980, Spain
[2] Univ Valencia, Dept Fis Aplicada & Electromagnetisme, Dr Moliner 50, Burjassot 46100, Spain
[3] Univ Valencia, Dept Opt & Optometria & Ciencies Visio, Dr Moliner 50, Burjassot 46100, Spain
基金
欧盟地平线“2020”;
关键词
PULSE-PROPAGATION; SUPERCONTINUUM GENERATION; WAVE-GUIDES; DISPERSION; MODE;
D O I
10.1364/OL.528926
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The multifrequency character of nonlinearity dispersion is often dismissed because, in principle, it increases the computational load exceedingly rendering an impractical modeling and, typically, nonlinearities barely depend on frequency. Nonetheless, nonlinearity dispersion has recently enabled a solution to a long-standing challenge in optics. To explore the potential of this research avenue on solid theoretical grounds, we derive a propagation equation accounting for multifrequency nonlinearities rigorously that maintains the computational advantages of conventional models. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:4713 / 4716
页数:4
相关论文
共 50 条
  • [21] A stochastic nonlinear Schrodinger equation
    Debussche, A
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 292 - 295
  • [22] Eigenvalues of the nonlinear Schrodinger equation
    Geltman, S.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (09):
  • [23] Solving the nonlinear Schrodinger equation
    Forestieri, E
    Secondini, M
    OPTICAL COMMUNICATION THEORY AND TECHNIQUES, 2005, : 3 - +
  • [24] On the forced nonlinear Schrodinger equation
    Shull, R
    Bu, C
    Wang, HF
    Chu, ML
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 626 - 630
  • [25] Comments on the nonlinear Schrodinger equation
    Davidson, MP
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2001, 116 (11): : 1291 - 1295
  • [26] On a deformation of the nonlinear Schrodinger equation
    Arnaudon, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (12)
  • [27] Symmetries of the nonlinear Schrodinger equation
    Grébert, B
    Kappeler, T
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2002, 130 (04): : 603 - 618
  • [28] Direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation and the modified nonlinear Schrodinger equation
    Chen, XJ
    Yang, JK
    PHYSICAL REVIEW E, 2002, 65 (06):
  • [29] Marchenko equation for the derivative nonlinear Schrodinger equation
    Huang Nian-Ning
    CHINESE PHYSICS LETTERS, 2007, 24 (04) : 894 - 897
  • [30] On the integrability of the extended nonlinear Schrodinger equation and the coupled extended nonlinear Schrodinger equations
    Nakkeeran, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (21): : 3947 - 3949