Multifrequency nonlinear Schrodinger equation

被引:0
|
作者
Castello-Lurbe, David [1 ,2 ]
Silvestre, Enrique [1 ,3 ]
Andres, Miguel V. [1 ,2 ]
机构
[1] Univ Valencia, Inst Univ Ciencies Mat, Catedrat Agustin Escardino 9, Paterna 46980, Spain
[2] Univ Valencia, Dept Fis Aplicada & Electromagnetisme, Dr Moliner 50, Burjassot 46100, Spain
[3] Univ Valencia, Dept Opt & Optometria & Ciencies Visio, Dr Moliner 50, Burjassot 46100, Spain
基金
欧盟地平线“2020”;
关键词
PULSE-PROPAGATION; SUPERCONTINUUM GENERATION; WAVE-GUIDES; DISPERSION; MODE;
D O I
10.1364/OL.528926
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The multifrequency character of nonlinearity dispersion is often dismissed because, in principle, it increases the computational load exceedingly rendering an impractical modeling and, typically, nonlinearities barely depend on frequency. Nonetheless, nonlinearity dispersion has recently enabled a solution to a long-standing challenge in optics. To explore the potential of this research avenue on solid theoretical grounds, we derive a propagation equation accounting for multifrequency nonlinearities rigorously that maintains the computational advantages of conventional models. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:4713 / 4716
页数:4
相关论文
共 50 条
  • [1] NONLINEAR SCHRODINGER EQUATION
    BAILLON, JB
    CAZENAVE, T
    FIGUEIRA, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (15): : 869 - 872
  • [2] NONLINEAR SCHRODINGER EQUATION
    BIROLI, M
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (06): : 854 - 859
  • [3] Nonlinear Schrodinger-Helmholtz equation as numerical regularization of the nonlinear Schrodinger equation
    Cao, Yanping
    Musslimani, Ziad H.
    Titi, Edriss S.
    NONLINEARITY, 2008, 21 (05) : 879 - 898
  • [4] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [5] Solutions of a nonlinear Schrodinger equation
    deFigueiredo, DG
    Ding, YH
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (03) : 563 - 584
  • [6] Fractional nonlinear Schrodinger equation
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    Sanchez-Suarez, Isahi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [7] KAM for the nonlinear Schrodinger equation
    Eliasson, L. Hakan
    Kuksin, Sergei B.
    ANNALS OF MATHEMATICS, 2010, 172 (01) : 371 - 435
  • [8] On Nonlinear Equation of Schrodinger type
    Soltanov, Kamal N.
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 923 - 932
  • [10] Collapse in the nonlinear Schrodinger equation
    Ovchinnikov, YN
    Sigal, IM
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 89 (01) : 35 - 40