Quantifying urban air quality through multispectral satellite imagery and Google earth Engine

被引:0
|
作者
Aghdam, Faezeh Zamiri [1 ]
Hasanlou, Mahdi [1 ]
Dehghanijabbarlou, Milad [2 ]
机构
[1] Univ Tehran, Coll Engn, Sch Surveying & Geospatial Engn, Tehran, Iran
[2] Eskisehir Tech Univ, Earth & Space Sci Inst, Eskisehir, Turkiye
关键词
Remote sensing; Machine learning; PM2.5; Landsat; Sentinel-2; GEE; High resolution; PARTICULATE MATTER; AEROSOL PRODUCT; METEOROLOGICAL PARAMETERS; RESOLUTION; LAND; CALIBRATION; ALGORITHMS;
D O I
10.1016/j.jastp.2024.106301
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The escalating concerns surrounding urban air pollution 's impact on both the environment and human health have prompted increased attention from researchers, policymakers, and citizens alike. As such, this study addresses growing concerns about urban air pollution 's impact on the environment and human health, emphasizing the need for early, high-resolution PM2.5 pollutant measurements. Utilizing Google Earth Engine (GEE) machine learning algorithms, our study evaluates six models over four years in Tehran and Tabriz. Inputs include satellite imagery, meteorological data, and pollutant measurements from air quality stations. Four models -Histogram Gradient Boosting, Random Forest, Extreme Gradient Boosting, and Ada Boosted Decision Trees -outperform Support Vector Machine and Linear Regression. The selected model, a combination of decision tree algorithms and Ada Boost, achieves a notable correlation coefficient of 79.8% and an RMSE of 0.271 g/m3. This superior performance enables the generation of high-resolution (30-m) PM2.5 estimates for the two cities. The study 's comprehensive approach, involving various data sources and advanced machine learning techniques, contributes a valuable method for accurate PM2.5 assessment. The findings hold significance for urban air quality management and provide a potential framework for generating detailed PM2.5 datasets based on Landsat images.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Google Earth adds air quality data
    不详
    POWER, 2008, 152 (01) : 8 - 8
  • [22] Rapid Mapping and Annual Dynamic Evaluation of Quality of Urban Green Spaces on Google Earth Engine
    Chen, Qiang
    Zhong, Cuiping
    Jing, Changfeng
    Li, Yuanyuan
    Cao, Beilei
    Cheng, Qianhao
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (10)
  • [23] Remote Monitoring of Maize Crop through Satellite Multispectral Imagery
    Nandibewoor, Archana
    Hebbal, Saleem B.
    Hegadi, Ravindra
    INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING TECHNOLOGIES AND APPLICATIONS (ICACTA), 2015, 45 : 344 - 353
  • [24] Evapotranspiration determination with satellite and reanalysis data using Google Earth Engine
    Degano, Maria Florencia
    Rivas, Raul Eduardo
    Bayala, Martin Ignacio
    TECNOLOGIA Y CIENCIAS DEL AGUA, 2024, 15 (04) : 137 - 193
  • [25] Automatic extraction of urban regions from multispectral spot satellite imagery
    Jiang, Q
    Keaton, T
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2000, : 728 - 731
  • [26] SAR imagery for urban air quality
    Basly, L
    Cauneau, F
    Couvercelle, C
    Ranchin, T
    Wald, L
    OPERATIONAL REMOTE SENSING FOR SUSTAINABLE DEVELOPMENT, 1999, : 165 - 170
  • [27] Mapping and quantifying agricultural irrigation in heterogeneous landscapes using Google Earth Engine
    Zurqani, H. A.
    Allen, J. S.
    Post, C. J.
    Pellett, C. A.
    Walker, T. C.
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 23
  • [28] Utilization of Landsat Imagery and Google Earth Engine to Analyze the Urban Growth Dynamics in Thuan An City, Binh Duong Province
    Tran Thi Anh Thu
    Tran Thi An
    Nguyen Le Tan Dat
    Nguyen Kim Loi
    NATIONAL CONFERENCE ON GIS APPLICATION, 2024, 1345
  • [29] Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
    Quintana-Molina, Jose Rodolfo
    Sanchez-Cohen, Ignacio
    Jimenez-Jimenez, Sergio Ivan
    Marcial-Pablo, Mariana de Jesus
    Trejo-Calzada, Ricardo
    Quintana-Molina, Emilio
    REVISTA DE TELEDETECCION, 2023, (62): : 21 - 38
  • [30] Analysis of Waterbody Changes in Small and Medium-Sized Reservoirs Using Optical Satellite Imagery Based on Google Earth Engine
    Cho, Younghyun
    Noh, Joonwoo
    KOREAN JOURNAL OF REMOTE SENSING, 2024, 40 (04) : 363 - 375