Quantifying urban air quality through multispectral satellite imagery and Google earth Engine

被引:0
|
作者
Aghdam, Faezeh Zamiri [1 ]
Hasanlou, Mahdi [1 ]
Dehghanijabbarlou, Milad [2 ]
机构
[1] Univ Tehran, Coll Engn, Sch Surveying & Geospatial Engn, Tehran, Iran
[2] Eskisehir Tech Univ, Earth & Space Sci Inst, Eskisehir, Turkiye
关键词
Remote sensing; Machine learning; PM2.5; Landsat; Sentinel-2; GEE; High resolution; PARTICULATE MATTER; AEROSOL PRODUCT; METEOROLOGICAL PARAMETERS; RESOLUTION; LAND; CALIBRATION; ALGORITHMS;
D O I
10.1016/j.jastp.2024.106301
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The escalating concerns surrounding urban air pollution 's impact on both the environment and human health have prompted increased attention from researchers, policymakers, and citizens alike. As such, this study addresses growing concerns about urban air pollution 's impact on the environment and human health, emphasizing the need for early, high-resolution PM2.5 pollutant measurements. Utilizing Google Earth Engine (GEE) machine learning algorithms, our study evaluates six models over four years in Tehran and Tabriz. Inputs include satellite imagery, meteorological data, and pollutant measurements from air quality stations. Four models -Histogram Gradient Boosting, Random Forest, Extreme Gradient Boosting, and Ada Boosted Decision Trees -outperform Support Vector Machine and Linear Regression. The selected model, a combination of decision tree algorithms and Ada Boost, achieves a notable correlation coefficient of 79.8% and an RMSE of 0.271 g/m3. This superior performance enables the generation of high-resolution (30-m) PM2.5 estimates for the two cities. The study 's comprehensive approach, involving various data sources and advanced machine learning techniques, contributes a valuable method for accurate PM2.5 assessment. The findings hold significance for urban air quality management and provide a potential framework for generating detailed PM2.5 datasets based on Landsat images.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping
    Shelestov, Andrii
    Lavreniuk, Mykola
    Kussul, Nataliia
    Novikov, Alexei
    Skakun, Sergii
    FRONTIERS IN EARTH SCIENCE, 2017, 5 : 1 - 10
  • [32] CoastSat: A Google Earth Engine-enabled Python']Python toolkit to extract shorelines from publicly available satellite imagery
    Vos, Kilian
    Splinter, Kristen D.
    Harley, Mitchell D.
    Simmons, Joshua A.
    Turner, Ian L.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 122
  • [33] Evaluation of Urban Ecological Environment Quality Based on Google Earth Engine: A Case Study in Xi'an, China
    Yang, Shuo
    Su, Hao
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2023, 32 (01): : 927 - 942
  • [34] Unveiling Seasonal Fluctuations in Air Quality Using Google Earth Engine: A Case Study for Gujarat, India
    Jodhani, Keval H.
    Gupta, Nitesh
    Parmar, Aditya D.
    Bhavsar, Jimit D.
    Patel, Dhruvesh
    Singh, Sudhir Kumar
    Mishra, Umank
    Omar, Padam Jee
    Omar, Ganesh Ji
    TOPICS IN CATALYSIS, 2024, 67 (15-16) : 961 - 982
  • [35] Quantifying urban flood extent using satellite imagery and machine learning
    Composto, Rebecca W.
    Tulbure, Mirela G.
    Tiwari, Varun
    Gaines, Mollie D.
    Caineta, Julio
    NATURAL HAZARDS, 2025, 121 (01) : 175 - 199
  • [36] Critical Analysis of Urban Vegetation Mapping by Satellite Multispectral and Airborne Hyperspectral Imagery
    Gadal, Sebastien
    Ouerghemmi, Walid
    Barlatier, Romain
    Mozgeris, Gintautas
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON GEOGRAPHICAL INFORMATION SYSTEMS THEORY, APPLICATIONS AND MANAGEMENT (GISTAM 2019), 2019, : 97 - 104
  • [37] Simulation of GNSS Satellite Availability in Urban Environments Using Google Earth
    Suzuki, Taro
    Kubo, Nobuaki
    PROCEEDINGS OF THE ION 2015 PACIFIC PNT MEETING, 2015, : 1069 - 1079
  • [38] Unsupervised building detection in complex urban environments from multispectral satellite imagery
    Aytekin, Orsan
    Erener, Arzu
    Ulusoy, Ilkay
    Duzgun, Sebnem
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (07) : 2152 - 2177
  • [39] EXTRACTING URBAN MORPHOLOGY FOR ATMOSPHERIC MODELING FROM MULTISPECTRAL AND SAR SATELLITE IMAGERY
    Wittke, S.
    Karila, K.
    Puttonen, E.
    Hellsten, A.
    Auvinen, M.
    Karjalainen, M.
    ISPRS HANNOVER WORKSHOP: HRIGI 17 - CMRT 17 - ISA 17 - EUROCOW 17, 2017, 42-1 (W1): : 425 - 431
  • [40] Study on the Possibility of Estimating Surface Soil Moisture Using Sentinel-1 SAR Satellite Imagery Based on Google Earth Engine
    Cho, Younghyun
    KOREAN JOURNAL OF REMOTE SENSING, 2024, 40 (02) : 229 - 241