Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine

被引:1
|
作者
Quintana-Molina, Jose Rodolfo [1 ]
Sanchez-Cohen, Ignacio [2 ]
Jimenez-Jimenez, Sergio Ivan [2 ]
Marcial-Pablo, Mariana de Jesus [2 ]
Trejo-Calzada, Ricardo [1 ]
Quintana-Molina, Emilio [3 ]
机构
[1] Chapingo Autonomous Univ, Reg Univ Unit Arid Zones, Nat Resources & Environm Arid Zones, Km 40 Rd, Gomez Palacio Chihuahua B 35230, Durango, Mexico
[2] INIFAP CENID RASPA Natl Ctr Disciplinary Res Water, Right Sacramento Canal km 6-5, Gomez Palacio 35140, Durango, Mexico
[3] Wageningen Univ & Res, Water Resources Management Chair Grp, Int Land & Water Management Program, NL-6708 PB Wageningen, Gueldres, Netherlands
来源
REVISTA DE TELEDETECCION | 2023年 / 62期
关键词
Satellite images; models; vegetation indices; pixel distributions; OPTICAL TRAPEZOID MODEL; TEMPERATURE; ETM+;
D O I
10.4995/raet.2023.19368
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Water scarcity for agriculture is increasingly evident due to climatic alterations and inadequate management of this resource. Therefore, developing digital models that help improve water resource management to provide solutions to agronomic problems in northern Mexico is necessary. In this context, the objective of the present research is to calibrate the Optical Trapezoidal (OPTRAM) and Thermal-Optical Trapezoidal (TOTRAM) models to estimate the volumetric soil moisture at different depths through vegetation indices derived from Landsat-8 and Sentinel-2 satellite images using Google Earth Engine (GEE). Agricultural areas under gravity irrigation and rainfed runoff in the Comarca Lagunera, the lower part of the Hydrological Region No. 36 of the Nazas and Aguanaval rivers were selected for in-situ measurements. The OPTRAM and TOTRAM normalized moisture content (W) estimates were compared with in-situ volumetric soil moisture (& theta;) data. Results indicate that the predictions of OPTRAM errors using Sentinel-2 images showed RMSE between 0.033 to 0.043 cm3 cm-3 and R2 between 0.66 to 0.75, whereas Landsat-8 errors showed RSME from 0.036 to 0.057 cm3 cm-3 and R2 between 0.70 to 0.81. On the other hand, TOTRAM errors showed RMSE between 0.045 to 0.053 cm3 cm-3 and R2 between 0.62 to 0.85 through calibrations. This study made it possible to evaluate the most accurate combinations of the pixel distributions of each model and vegetation indices for the estimation of volumetric soil moisture within the different phenological stages of the crops.
引用
收藏
页码:21 / 38
页数:18
相关论文
共 50 条
  • [1] Inter comparison of post-fire burn severity indices of Landsat-8 and Sentinel-2 imagery using Google Earth Engine
    Preethi Konkathi
    Amba Shetty
    Earth Science Informatics, 2021, 14 : 645 - 653
  • [2] Inter comparison of post-fire burn severity indices of Landsat-8 and Sentinel-2 imagery using Google Earth Engine
    Konkathi, Preethi
    Shetty, Amba
    EARTH SCIENCE INFORMATICS, 2021, 14 (02) : 645 - 653
  • [3] EVALUATING YIELD VARIABILITY OF CORN AND SOYBEAN USING LANDSAT-8, SENTINEL-2 AND MODIS IN GOOGLE EARTH ENGINE
    Gao, Feng
    Anderson, Martha
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7286 - 7289
  • [4] Classification comparison of Landsat-8 and Sentinel-2 data in Google Earth Engine, study case of the city of Kabul
    Ahady, Abdul Baqi
    Kaplan, Gordana
    INTERNATIONAL JOURNAL OF ENGINEERING AND GEOSCIENCES, 2022, 7 (01): : 24 - 31
  • [5] Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods
    Nasiri, Vahid
    Deljouei, Azade
    Moradi, Fardin
    Sadeghi, Seyed Mohammad Moein
    Borz, Stelian Alexandru
    REMOTE SENSING, 2022, 14 (09)
  • [6] Harmonized Landsat and Sentinel-2 Data with Google Earth Engine
    Berra, Elias Fernando
    Fontana, Denise Cybis
    Yin, Feng
    Breunig, Fabio Marcelo
    REMOTE SENSING, 2024, 16 (15)
  • [7] Combined use of Sentinel-2 and Landsat-8 to monitor water surface area and evaluated drought risk severity using Google Earth Engine
    Benzougagh, Brahim
    Meshram, Sarita Gajbhiye
    El Fellah, Bouchta
    Mastere, Mohamed
    Dridri, Abdallah
    Sadkaoui, Driss
    Mimich, Khalid
    Khedher, Khaled Mohamed
    EARTH SCIENCE INFORMATICS, 2022, 15 (02) : 929 - 940
  • [8] Combined use of Sentinel-2 and Landsat-8 to monitor water surface area and evaluated drought risk severity using Google Earth Engine
    Brahim Benzougagh
    Sarita Gajbhiye Meshram
    Bouchta El Fellah
    Mohamed Mastere
    Abdallah Dridri
    Driss Sadkaoui
    Khalid Mimich
    Khaled Mohamed Khedher
    Earth Science Informatics, 2022, 15 : 929 - 940
  • [9] An Experiment for Surface Soil Moisture Mapping Using Sentinel-1 and Sentinel-2 Image on Google Earth Engine
    Lee, Jihyun
    Kim, Kwangseob
    Lee, Kiwon
    KOREAN JOURNAL OF REMOTE SENSING, 2023, 39 (05) : 599 - 608
  • [10] Improved Co-Registration of Sentinel-2 and Landsat-8 Imagery for Earth Surface Motion Measurements
    Stumpf, Andre
    Michea, David
    Malet, Jean-Philippe
    REMOTE SENSING, 2018, 10 (02)