Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine

被引:1
|
作者
Quintana-Molina, Jose Rodolfo [1 ]
Sanchez-Cohen, Ignacio [2 ]
Jimenez-Jimenez, Sergio Ivan [2 ]
Marcial-Pablo, Mariana de Jesus [2 ]
Trejo-Calzada, Ricardo [1 ]
Quintana-Molina, Emilio [3 ]
机构
[1] Chapingo Autonomous Univ, Reg Univ Unit Arid Zones, Nat Resources & Environm Arid Zones, Km 40 Rd, Gomez Palacio Chihuahua B 35230, Durango, Mexico
[2] INIFAP CENID RASPA Natl Ctr Disciplinary Res Water, Right Sacramento Canal km 6-5, Gomez Palacio 35140, Durango, Mexico
[3] Wageningen Univ & Res, Water Resources Management Chair Grp, Int Land & Water Management Program, NL-6708 PB Wageningen, Gueldres, Netherlands
来源
REVISTA DE TELEDETECCION | 2023年 / 62期
关键词
Satellite images; models; vegetation indices; pixel distributions; OPTICAL TRAPEZOID MODEL; TEMPERATURE; ETM+;
D O I
10.4995/raet.2023.19368
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Water scarcity for agriculture is increasingly evident due to climatic alterations and inadequate management of this resource. Therefore, developing digital models that help improve water resource management to provide solutions to agronomic problems in northern Mexico is necessary. In this context, the objective of the present research is to calibrate the Optical Trapezoidal (OPTRAM) and Thermal-Optical Trapezoidal (TOTRAM) models to estimate the volumetric soil moisture at different depths through vegetation indices derived from Landsat-8 and Sentinel-2 satellite images using Google Earth Engine (GEE). Agricultural areas under gravity irrigation and rainfed runoff in the Comarca Lagunera, the lower part of the Hydrological Region No. 36 of the Nazas and Aguanaval rivers were selected for in-situ measurements. The OPTRAM and TOTRAM normalized moisture content (W) estimates were compared with in-situ volumetric soil moisture (& theta;) data. Results indicate that the predictions of OPTRAM errors using Sentinel-2 images showed RMSE between 0.033 to 0.043 cm3 cm-3 and R2 between 0.66 to 0.75, whereas Landsat-8 errors showed RSME from 0.036 to 0.057 cm3 cm-3 and R2 between 0.70 to 0.81. On the other hand, TOTRAM errors showed RMSE between 0.045 to 0.053 cm3 cm-3 and R2 between 0.62 to 0.85 through calibrations. This study made it possible to evaluate the most accurate combinations of the pixel distributions of each model and vegetation indices for the estimation of volumetric soil moisture within the different phenological stages of the crops.
引用
收藏
页码:21 / 38
页数:18
相关论文
共 50 条
  • [21] Recent advances in the use of public domain satellite imagery for mineral exploration: A review of Landsat-8 and Sentinel-2 applications
    Adiri, Zakaria
    Lhissou, Rachid
    El Harti, Abderrazak
    Jellouli, Amine
    Chakouri, Mohcine
    ORE GEOLOGY REVIEWS, 2020, 117 (117)
  • [22] Assessing the performance of machine learning algorithms for soil salinity mapping in Google Earth Engine platform using Sentinel-2A and Landsat-8 OLI data
    Aksoy, Samet
    Yildirim, Aylin
    Gorji, Taha
    Hamzehpour, Nikou
    Tanik, Aysegul
    Sertel, Elif
    ADVANCES IN SPACE RESEARCH, 2022, 69 (02) : 1072 - 1086
  • [23] Assessing the spatial variability of soil surface colors in northern Jordan using satellite data from Landsat-8 and Sentinel-2
    Sahwan, Wahib
    Lucke, Bernhard
    Kappas, Martin
    Baeumler, Rupert
    EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01): : 850 - 862
  • [24] Rapid Estimation of Decameter FPAR from Sentinel-2 Imagery on the Google Earth Engine
    Wang, Yiting
    Zhan, Yinggang
    Xie, Donghui
    Liu, Jinghao
    Huang, Haiyang
    Zhao, Dan
    Xiao, Zihang
    Zhou, Xiaode
    FORESTS, 2022, 13 (12):
  • [25] Building a mangrove ecosystem monitoring tool for managers using Sentinel-2 imagery in Google Earth Engine
    Kotikot, Susan M.
    Spencer, Olivia
    Cissell, Jordan R.
    Connette, Grant
    Smithwick, Erica A. H.
    Durdall, Allie
    Grimes, Kristin W.
    Stewart, Heather A.
    Tzadik, Orian
    Canty, Steven W. J.
    OCEAN & COASTAL MANAGEMENT, 2024, 256
  • [26] An automatic cloud detection model for Sentinel-2 imagery based on Google Earth Engine
    Li, Jianfeng
    Wang, Luyao
    Liu, Siqi
    Peng, Biao
    Ye, Huping
    REMOTE SENSING LETTERS, 2022, 13 (02) : 196 - 206
  • [27] Decameter Cropland LAI/FPAR Estimation From Sentinel-2 Imagery Using Google Earth Engine
    Sun, Yuanheng
    Qin, Qiming
    Ren, Huazhong
    Zhang, Yao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [28] Mapping algal bloom dynamics in small reservoirs using Sentinel-2 imagery in Google Earth Engine
    Kislik, Chippie
    Dronova, Iryna
    Grantham, Theodore E.
    Kelly, Maggi
    ECOLOGICAL INDICATORS, 2022, 140
  • [29] A Broadscale Assessment of Sentinel-2 Imagery and the Google Earth Engine for the Nationwide Mapping of Chlorophyll a
    Johansen, Richard A.
    Reif, Molly K.
    Saltus, Christina L.
    Pokrzywinski, Kaytee L.
    SUSTAINABILITY, 2024, 16 (05)
  • [30] Seagrass mapping of north-eastern Brazil using Google Earth Engine and Sentinel-2 imagery
    Deeks, Emma
    Magalhaes, Karine
    Traganos, Dimosthenis
    Ward, Raymond
    Normande, Iran
    Dawson, Terence P.
    Kratina, Pavel
    ENVIRONMENTAL AND SUSTAINABILITY INDICATORS, 2024, 24