Enhancement of Infrared Imagery through Low-Light Image Guidance Leveraging Deep Learning Techniques

被引:0
|
作者
Gan, Yong [1 ]
Wang, Yuefeng [2 ]
机构
[1] Zhengzhou Univ Technol, Zhengzhou 450066, Peoples R China
[2] Zhengzhou Univ Light Ind, Sch Comp Sci & Technol, Zhengzhou 450001, Peoples R China
关键词
FUSION; DECOMPOSITION;
D O I
10.1155/2024/8574836
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Addressing challenges in infrared imaging, such as low contrast, blurriness, and detail scarcity due to environmental limitations and the target's limited radiative capacity, this research introduces a novel infrared image enhancement approach using low-light image guidance. Initially, the Cbc-SwinIR model (coordinate-based convolution- image restoration using Swin Transformer) is applied for super-resolution reconstruction of both shimmer and infrared images, improving their resolution and clarity. Next, the MAXIM model (multiaxis MLP for image processing) enhances the visibility of low-light images under low illumination. Finally, the AILI (adaptive infrared and low-light)-fusion algorithm fuses the processed low-light image with the infrared image, achieving comprehensive visual enhancement. The enhanced infrared image exhibits significant improvements: a 0.08 increase in fractal dimension (FD), 0.094 rise in information entropy, 0.00512 elevation in mean square error (MSE), and a 12.206 reduction in peak signal-to-noise ratio (PSNR). These advancements in FD and information entropy highlight a substantial improvement in the complexity and diversity of the infrared image's features. Despite a decrease in PSNR and an increase in MSE, this indicates that the newly introduced information enhances contrast and enriches texture details in the infrared images, resulting in pixel-level variations. This methodology demonstrates considerable improvements in visual content and analytical value, proving relevant, innovative, and efficient in infrared image enhancement with broad application prospects.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Deep Color Consistent Network for Low-Light Image Enhancement
    Zhang, Zhao
    Zheng, Huan
    Hong, Richang
    Xu, Mingliang
    Yan, Shuicheng
    Wang, Meng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1889 - 1898
  • [32] Deep Multi-path Low-light Image Enhancement
    Li, Siyuan
    Cheng, Qingsha S.
    Zhang, Jianguo
    THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2020), 2020, : 91 - 96
  • [33] Light-Aware Contrastive Learning for Low-Light Image Enhancement
    Wu, Xu
    Lai, Zhihui
    Zhou, Jie
    Hou, Xianxu
    Pedrycz, Witold
    Shen, Linlin
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (09)
  • [34] Multi-Feature Learning for Low-Light Image Enhancement
    Huang, Wei
    Zhu, Yifeng
    Wang, Rui
    Lu, Xiaofeng
    TWELFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2020), 2020, 11519
  • [35] LEARNING TO FUSE HETEROGENEOUS FEATURES FOR LOW-LIGHT IMAGE ENHANCEMENT
    Tang, Zhenyu
    Ma, Long
    Shang, Xiaoke
    Fan, Xin
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2100 - 2104
  • [36] LightingNet: An Integrated Learning Method for Low-Light Image Enhancement
    Yang, Shaoliang
    Zhou, Dongming
    Cao, Jinde
    Guo, Yanbu
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2023, 9 : 29 - 42
  • [37] Degrade Is Upgrade: Learning Degradation for Low-Light Image Enhancement
    Jiang, Kui
    Wang, Zhongyuan
    Wang, Zheng
    Chen, Chen
    Yi, Peng
    Lu, Tao
    Lin, Chia-Wen
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1078 - 1086
  • [38] Edge-Computing-Enabled Deep Learning Approach for Low-Light Satellite Image Enhancement
    Bui, Trong-An
    Lee, Pei-Jun
    Liang, Chun-Sheng
    Hsu, Pei-Hsiang
    Shiu, Shiuan-Hal
    Tsai, Chen-Kai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 4071 - 4083
  • [39] Low-Light Image Enhancement With SAM-Based Structure Priors and Guidance
    Li, Guanlin
    Zhao, Bin
    Li, Xuelong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10854 - 10866
  • [40] Deep learning-based low-light image enhancement method for driving behavior recognition
    Zhang, Chenjie
    Li, Jialu
    Hu, Hanping
    Bai, Xuemei
    2024 WRC SYMPOSIUM ON ADVANCED ROBOTICS AND AUTOMATION, WRC SARA, 2024, : 344 - 349