Enhancement of Infrared Imagery through Low-Light Image Guidance Leveraging Deep Learning Techniques

被引:0
|
作者
Gan, Yong [1 ]
Wang, Yuefeng [2 ]
机构
[1] Zhengzhou Univ Technol, Zhengzhou 450066, Peoples R China
[2] Zhengzhou Univ Light Ind, Sch Comp Sci & Technol, Zhengzhou 450001, Peoples R China
关键词
FUSION; DECOMPOSITION;
D O I
10.1155/2024/8574836
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Addressing challenges in infrared imaging, such as low contrast, blurriness, and detail scarcity due to environmental limitations and the target's limited radiative capacity, this research introduces a novel infrared image enhancement approach using low-light image guidance. Initially, the Cbc-SwinIR model (coordinate-based convolution- image restoration using Swin Transformer) is applied for super-resolution reconstruction of both shimmer and infrared images, improving their resolution and clarity. Next, the MAXIM model (multiaxis MLP for image processing) enhances the visibility of low-light images under low illumination. Finally, the AILI (adaptive infrared and low-light)-fusion algorithm fuses the processed low-light image with the infrared image, achieving comprehensive visual enhancement. The enhanced infrared image exhibits significant improvements: a 0.08 increase in fractal dimension (FD), 0.094 rise in information entropy, 0.00512 elevation in mean square error (MSE), and a 12.206 reduction in peak signal-to-noise ratio (PSNR). These advancements in FD and information entropy highlight a substantial improvement in the complexity and diversity of the infrared image's features. Despite a decrease in PSNR and an increase in MSE, this indicates that the newly introduced information enhances contrast and enriches texture details in the infrared images, resulting in pixel-level variations. This methodology demonstrates considerable improvements in visual content and analytical value, proving relevant, innovative, and efficient in infrared image enhancement with broad application prospects.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement
    Ma, Long
    Liu, Risheng
    Zhang, Jiaao
    Fan, Xin
    Luo, Zhongxuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5666 - 5680
  • [12] Low-light image enhancement by deep learning network for improved illumination map
    Wang, Manli
    Li, Jiayue
    Zhang, Changsen
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 232
  • [13] Low-Light Image Enhancement Algorithm Based on Deep Learning and Retinex Theory
    Lei, Chenyu
    Tian, Qichuan
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [14] A comparative analysis of Deep Learning based approaches for Low-light Image Enhancement
    Parihar, Anil Singh
    Singhal, Shivam
    Nanduri, Srishti
    Raghav, Yash
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (IEEE - ICRAIE-2020), 2020,
  • [15] Low-light Image Enhancement with Deep Blind Denoising
    Guo, Yu
    Lu, Yuxu
    Yang, Meifang
    Liu, Ryan Wen
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 406 - 411
  • [16] Low-light image enhancement via deep Retinex decomposition and bilateral learning
    Lv, Xiaoqian
    Sun, Yujing
    Zhang, Jun
    Jiang, Feng
    Zhang, Shengping
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 99
  • [17] Deep decomposer and refiner for low-light image enhancement
    Vaish, Piyush
    Parihar, Anil Singh
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (05)
  • [18] Deep Lightening Network for Low-light Image Enhancement
    Wang, Li-Wen
    Liu, Zhi-Song
    Siu, Wan-Chi
    Lun, Daniel Pak-Kong
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [19] Semantically Contrastive Learning for Low-Light Image Enhancement
    Liang, Dong
    Li, Ling
    Wei, Mingqiang
    Yang, Shuo
    Zhang, Liyan
    Yang, Wenhan
    Du, Yun
    Zhou, Huiyu
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1555 - 1563
  • [20] A Low-Light Image Enhancement Algorithm Using the Hybrid Strategy of Deep Learning and Image Fusion
    Xu S.-P.
    Lin Z.-Y.
    Zhang G.-Z.
    Chen X.-G.
    Li F.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (01): : 72 - 76