Implicit-explicit two-step peer methods with RK stability for implicit part

被引:0
|
作者
Sharifi, Mohammad [1 ]
Abdi, Ali [1 ,2 ]
Hojjati, Gholamreza [1 ,2 ]
Mousavi, Aida [1 ]
机构
[1] Univ Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
[2] Univ Tabriz, Res Dept Computat Algorithms & Math Models, Tabriz, Iran
关键词
IMEX methods; Diagonally implicit two-step peer methods; Order conditions; Runge-Kutta stability; Stability analysis; RUNGE-KUTTA METHODS; GENERAL LINEAR METHODS; W-METHODS; MULTISTEP METHODS; CONSTRUCTION; SCHEMES; DIMSIMS;
D O I
10.1007/s11075-024-01867-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a new family of implicit-explicit (IMEX) schemes appropriate for dealing with the systems of differential equations including two non-stiff and stiff parts on the right-hand side. The proposed IMEX schemes are a combination of s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{s}$$\end{document}-stage explicit and implicit diagonally implicit two-step peer methods, in which the implicit part of the methods is A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}$$\end{document}- or L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{L}$$\end{document}-stable and also equipped with Runge-Kutta stability property. The order conditions of this class of IMEX schemes are derived for the methods of orer p=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}=\varvec{s}$$\end{document} and their stability behavior is analyzed. Some examples of the methods with p=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}=\varvec{s}$$\end{document} up to order five are constructed and the performance of the proposed methods is investigated by giving the results of some numerical experiments.
引用
收藏
页码:2145 / 2170
页数:26
相关论文
共 50 条
  • [41] Implicit-explicit methods for time-dependent PDEs
    Ruuth, SJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 23 - 23
  • [42] Extrapolated Implicit-Explicit Runge-Kutta Methods
    Cardone, Angelamaria
    Jackiewicz, Zdzislaw
    Sandu, Adrian
    Zhang, Hong
    MATHEMATICAL MODELLING AND ANALYSIS, 2014, 19 (01) : 18 - 43
  • [43] IMPLICIT-EXPLICIT MULTISTEP METHODS FOR NONLINEAR PARABOLIC EQUATIONS
    Akrivis, Georgios
    MATHEMATICS OF COMPUTATION, 2013, 82 (281) : 45 - 68
  • [44] Implicit-explicit methods for time-dependent PDEs
    Z Angew Math Mech ZAMM, Suppl 1 (23):
  • [45] On the implementation of explicit two-step peer methods with Runge-Kutta stability
    Abdi, A.
    Hojjati, G.
    Jackiewicz, Z.
    Podhaisky, H.
    Sharifi, M.
    APPLIED NUMERICAL MATHEMATICS, 2023, 186 : 213 - 227
  • [46] Explicit two-step peer methods with reused stages
    Calvo, M.
    Montijano, J. I.
    Randez, L.
    Saenz-de-la-Torre, A.
    APPLIED NUMERICAL MATHEMATICS, 2024, 195 : 75 - 88
  • [47] Accurate Implicit-Explicit General Linear Methods with Inherent Runge-Kutta Stability
    Bras, Michal
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (03) : 1105 - 1143
  • [48] Multi-implicit peer two-step W-methods for parallel time integration
    Schmitt, BA
    Weiner, R
    Podhaisky, H
    BIT NUMERICAL MATHEMATICS, 2005, 45 (01) : 197 - 217
  • [49] Multi-Implicit Peer Two-Step W-Methods for Parallel Time Integration
    Bernhard A. Schmitt
    Rüdiger Weiner
    Helmut Podhaisky
    BIT Numerical Mathematics, 2005, 45 : 197 - 217
  • [50] Super-convergent implicit–explicit Peer methods with variable step sizes
    Schneider, Moritz
    Lang, Jens
    Weiner, Rüdiger
    Journal of Computational and Applied Mathematics, 2021, 387