Implicit-explicit two-step peer methods with RK stability for implicit part

被引:0
|
作者
Sharifi, Mohammad [1 ]
Abdi, Ali [1 ,2 ]
Hojjati, Gholamreza [1 ,2 ]
Mousavi, Aida [1 ]
机构
[1] Univ Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
[2] Univ Tabriz, Res Dept Computat Algorithms & Math Models, Tabriz, Iran
关键词
IMEX methods; Diagonally implicit two-step peer methods; Order conditions; Runge-Kutta stability; Stability analysis; RUNGE-KUTTA METHODS; GENERAL LINEAR METHODS; W-METHODS; MULTISTEP METHODS; CONSTRUCTION; SCHEMES; DIMSIMS;
D O I
10.1007/s11075-024-01867-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a new family of implicit-explicit (IMEX) schemes appropriate for dealing with the systems of differential equations including two non-stiff and stiff parts on the right-hand side. The proposed IMEX schemes are a combination of s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{s}$$\end{document}-stage explicit and implicit diagonally implicit two-step peer methods, in which the implicit part of the methods is A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}$$\end{document}- or L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{L}$$\end{document}-stable and also equipped with Runge-Kutta stability property. The order conditions of this class of IMEX schemes are derived for the methods of orer p=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}=\varvec{s}$$\end{document} and their stability behavior is analyzed. Some examples of the methods with p=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}=\varvec{s}$$\end{document} up to order five are constructed and the performance of the proposed methods is investigated by giving the results of some numerical experiments.
引用
收藏
页码:2145 / 2170
页数:26
相关论文
共 50 条
  • [11] AN ANALOGUE TO THE A(θ)-STABILITY CONCEPT FOR IMPLICIT-EXPLICIT BDF METHODS
    Akrivis, Georgios
    Katsoprinakis, Emmanouil
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (06) : 3475 - 3503
  • [12] Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part
    G. Izzo
    Z. Jackiewicz
    Numerical Algorithms, 2019, 81 : 1343 - 1359
  • [13] Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part
    Izzo, G.
    Jackiewicz, Z.
    NUMERICAL ALGORITHMS, 2019, 81 (04) : 1343 - 1359
  • [14] Implicit-explicit second derivative general linear methods with strong stability preserving explicit part
    Moradi, A.
    Abdi, A.
    Hojjati, G.
    APPLIED NUMERICAL MATHEMATICS, 2022, 181 : 23 - 45
  • [15] Explicit two-step peer methods
    Weiner, Ruediger
    Biermann, Katja
    Schmitt, Bernhard A.
    Podhaisky, Helmut
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (04) : 609 - 619
  • [16] Strong stability preserving implicit and implicit–explicit second derivative general linear methods with RK stability
    Afsaneh Moradi
    Ali Abdi
    Gholamreza Hojjati
    Computational and Applied Mathematics, 2022, 41
  • [17] Implicit-explicit second derivative diagonally implicit multistage integration methods
    Abdi, Ali
    Hojjati, Gholamreza
    Sharifi, Mohammad
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [18] NONLINEAR STABILITY OF THE IMPLICIT-EXPLICIT METHODS FOR THE ALLEN-CAHN EQUATION
    Feng, Xinlong
    Song, Huailing
    Tang, Tao
    Yang, Jiang
    INVERSE PROBLEMS AND IMAGING, 2013, 7 (03) : 679 - 695
  • [19] Strong stability preserving implicit-explicit transformed general linear methods
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 176 : 206 - 225