Implicit-explicit two-step peer methods with RK stability for implicit part

被引:0
|
作者
Sharifi, Mohammad [1 ]
Abdi, Ali [1 ,2 ]
Hojjati, Gholamreza [1 ,2 ]
Mousavi, Aida [1 ]
机构
[1] Univ Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
[2] Univ Tabriz, Res Dept Computat Algorithms & Math Models, Tabriz, Iran
关键词
IMEX methods; Diagonally implicit two-step peer methods; Order conditions; Runge-Kutta stability; Stability analysis; RUNGE-KUTTA METHODS; GENERAL LINEAR METHODS; W-METHODS; MULTISTEP METHODS; CONSTRUCTION; SCHEMES; DIMSIMS;
D O I
10.1007/s11075-024-01867-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a new family of implicit-explicit (IMEX) schemes appropriate for dealing with the systems of differential equations including two non-stiff and stiff parts on the right-hand side. The proposed IMEX schemes are a combination of s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{s}$$\end{document}-stage explicit and implicit diagonally implicit two-step peer methods, in which the implicit part of the methods is A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}$$\end{document}- or L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{L}$$\end{document}-stable and also equipped with Runge-Kutta stability property. The order conditions of this class of IMEX schemes are derived for the methods of orer p=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}=\varvec{s}$$\end{document} and their stability behavior is analyzed. Some examples of the methods with p=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}=\varvec{s}$$\end{document} up to order five are constructed and the performance of the proposed methods is investigated by giving the results of some numerical experiments.
引用
收藏
页码:2145 / 2170
页数:26
相关论文
共 50 条
  • [21] Parallel Implicit-Explicit General Linear Methods
    Roberts, Steven
    Sarshar, Arash
    Sandu, Adrian
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (04) : 649 - 669
  • [22] On the contractivity of implicit-explicit linear multistep methods
    't Hout, KJI
    APPLIED NUMERICAL MATHEMATICS, 2002, 42 (1-3) : 201 - 212
  • [23] Parallel Implicit-Explicit General Linear Methods
    Steven Roberts
    Arash Sarshar
    Adrian Sandu
    Communications on Applied Mathematics and Computation, 2021, 3 : 649 - 669
  • [24] IMPLICIT-EXPLICIT MULTIRATE INFINITESIMAL GARK METHODS
    Chinomona, Rujeko
    Reynolds, Daniel R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : A3082 - A3113
  • [25] Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods With High Linear Order
    Conde, Sidafa
    Gottlieb, Sigal
    Grant, Zachary J.
    Shahid, John N.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [26] Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods with High Linear Order
    Conde, Sidafa
    Gottlieb, Sigal
    Grant, Zachary J.
    Shadid, John N.
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) : 667 - 690
  • [27] Adapted explicit two-step peer methods
    Conte, Dajana
    D'Ambrosio, Raffaele
    Moccaldi, Martina
    Paternoster, Beatrice
    JOURNAL OF NUMERICAL MATHEMATICS, 2019, 27 (02) : 69 - 83
  • [28] Superconvergent explicit two-step peer methods
    Weiner, Ruediger
    Schmitt, Bernhard A.
    Podhaisky, Helmut
    Jebens, Stefan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (02) : 753 - 764
  • [29] On the derivation of explicit two-step peer methods
    Calvo, M.
    Montijano, J. I.
    Randez, L.
    Van Daele, M.
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (04) : 395 - 409
  • [30] STABILITY PROPERTIES OF IMPLICIT-EXPLICIT MULTISTEP METHODS FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS
    Akrivis, Georgios
    MATHEMATICS OF COMPUTATION, 2016, 85 (301) : 2217 - 2229