Mitigating imbalances in heterogeneous feature fusion for multi-class 6D pose estimation

被引:2
|
作者
Wang, Huafeng [1 ]
Zhang, Haodu [2 ]
Liu, Wanquan [2 ]
Lv, Weifeng [3 ]
Gu, Xianfeng [4 ]
Guo, Kexin [5 ]
机构
[1] North China Univ Technol, Sch Informat Technol, Beijing 100041, Peoples R China
[2] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou 510335, Peoples R China
[3] Beihang Univ, Sch Comp Sci, Beijing 100083, Peoples R China
[4] Dept Comp Sci, Stony Brook, NY 11794 USA
[5] Beihang Univ, Hangzhou Innovat Inst, Hangzhou 310051, Peoples R China
基金
国家重点研发计划;
关键词
6D pose estimation; Heterogeneous information; Feature fusion; Unequal contributions; Point cloud; OBJECT; NETWORK;
D O I
10.1016/j.knosys.2024.111918
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most 6D pose studies often treat RGB and Depth features equally in fusion, potentially limiting model generalization, especially in multi -class tasks. This limitation arises from prevalent static map generation strategies that overlook discriminative features in downsampling sparse point clouds. Additionally, the commonly adopted direct concatenation approach in heterogeneous feature fusion often leads to an averaging effect, thereby reducing the effectiveness of each feature. To tackle these challenges, we propose an effective model for dynamic graph structure feature extraction, aimed at capturing richer features from point clouds. And we introduce an adaptive fusion method for heterogeneous features, which takes into account the unequal contributions to 6D pose estimation. Validation on benchmark datasets LineMOD and YCB-Video demonstrates its effectiveness for multi -class 6D pose estimation, surpassing existing fusion methods. Of particular significance, our method attains state-of-the-art (SOTA) results on the YCB-Video dataset.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Multi Task-Guided 6D Object Pose Estimation
    Thu-Uyen Nguyen
    Van-Duc Vu
    Van-Thiep Nguyen
    Ngoc-Anh Hoang
    Duy-Quang Vu
    Duc-Thanh Tran
    Khanh-Toan Phan
    Anh-Truong Mai
    Van-Hiep Duong
    Cong-Trinh Chan
    Ngoc-Trung Ho
    Quang-Tri Duong
    Phuc-Quan Ngo
    Dinh-Cuong Hoang
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024, 2024, : 215 - 222
  • [22] Robotic grasping method with 6D pose estimation and point cloud fusion
    Ma, Haofei
    Wang, Gongcheng
    Bai, Hua
    Xia, Zhiyu
    Wang, Weidong
    Du, Zhijiang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 134 (11-12): : 5603 - 5613
  • [23] A modal fusion network with dual attention mechanism for 6D pose estimation
    Wei, Liangrui
    Xie, Feifei
    Sun, Lin
    Chen, Jinpeng
    Zhang, Zhipeng
    VISUAL COMPUTER, 2024, 40 (10): : 7411 - 7425
  • [24] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [25] 6D Pose Estimation for Precision Assembly
    Skeik, Ola
    Erden, Mustafa Suphi
    Kong, Xianwen
    2022 IEEE 5TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING APPLICATIONS AND SYSTEMS, IPAS, 2022,
  • [26] A novel metric for 6D pose estimation
    Niedermaier, Tobias
    Berens, Felix
    Reischl, Markus
    Elser, Stefan
    AT-AUTOMATISIERUNGSTECHNIK, 2025, 73 (02) : 125 - 135
  • [27] BDR6D: Bidirectional Deep Residual Fusion Network for 6D Pose Estimation
    Liu, Penglei
    Zhang, Qieshi
    Cheng, Jun
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (02) : 1793 - 1804
  • [28] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation
    He, Yisheng
    Huang, Haibin
    Fan, Haoqiang
    Chen, Qifeng
    Sun, Jian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3002 - 3012
  • [29] RFF-PoseNet: A 6D Object Pose Estimation Network Based on Robust Feature Fusion in Complex Scenes
    Lei, Xiaomei
    Lu, Wenhuan
    Yong, Jiu
    Wei, Jianguo
    ELECTRONICS, 2024, 13 (17)
  • [30] EFN6D: an efficient RGB-D fusion network for 6D pose estimation
    Wang Y.
    Jiang X.
    Fujita H.
    Fang Z.
    Qiu X.
    Chen J.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) : 75 - 88