Multi Task-Guided 6D Object Pose Estimation

被引:0
|
作者
Thu-Uyen Nguyen [1 ]
Van-Duc Vu [1 ]
Van-Thiep Nguyen [1 ]
Ngoc-Anh Hoang [1 ]
Duy-Quang Vu [1 ]
Duc-Thanh Tran [1 ]
Khanh-Toan Phan [1 ]
Anh-Truong Mai [1 ]
Van-Hiep Duong [1 ]
Cong-Trinh Chan [1 ]
Ngoc-Trung Ho [1 ]
Quang-Tri Duong [1 ]
Phuc-Quan Ngo [1 ]
Dinh-Cuong Hoang [1 ]
机构
[1] FPT Univ Hanoi, Hanoi, Vietnam
关键词
Pose estimation; robot vision systems; intelligent systems; deep learning; supervised learning; machine vision;
D O I
10.1145/3654522.3654576
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Object pose estimation remains a fundamental challenge in computer vision, with cutting-edge methods relying on both RGB and depth data. Depth information is pivotal, offering crucial geometric cues that enable algorithms to navigate occlusions, fostering a more comprehensive scene under-standing and precise pose estimation. However, RGBD-based methods often require specialized depth sensors, which can be costlier and less accessible compared to standard RGB cameras. Consequently, research has explored techniques aiming to estimate object pose solely from color images. Yet, the absence of depth cues poses challenges in handling occlusions, comprehending object geometry, and resolving ambiguities arising from similar colors or textures. This paper introduces a end-to-end multi-task-guided object pose estimation method, utilizing RGB images as input and producing the 6D pose of multiple object instances. While our approach employs both depth and color images during training, inference relies solely on color images. We incorporate depth images to supervise a depth estimation branch, generating depth-aware features further refined through a cross-task attention module. These enhanced features are pivotal for our object pose estimation. Our method's innovation lies in significantly enhancing feature discriminability and robustness for object pose estimation. Through extensive experiments, we demonstrate competitive performance compared to state-of-the-art methods in object pose estimation.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 50 条
  • [1] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [2] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [3] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [4] Multi-View Keypoints for Reliable 6D Object Pose Estimation
    Li, Alan
    Schoellig, Angela P.
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 6988 - 6994
  • [5] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [6] Coupled Iterative Refinement for 6D Multi-Object Pose Estimation
    Lipson, Lahav
    Teed, Zachary
    Goyal, Ankit
    Deng, Jia
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6718 - 6727
  • [7] GeoPose: Dense Reconstruction Guided 6D Object Pose Estimation With Geometric Consistency
    Wang, Deming
    Zhou, Guangliang
    Yan, Yi
    Chen, Huiyi
    Chen, Qijun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4394 - 4408
  • [8] PoET: Pose Estimation Transformer for Single-View, Multi-Object 6D Pose Estimation
    Jantos, Thomas
    Hamdad, Mohamed Amin
    Granig, Wolfgang
    Weiss, Stephan
    Steinbrener, Jan
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1060 - 1070
  • [9] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734
  • [10] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622