Mitigating imbalances in heterogeneous feature fusion for multi-class 6D pose estimation

被引:2
|
作者
Wang, Huafeng [1 ]
Zhang, Haodu [2 ]
Liu, Wanquan [2 ]
Lv, Weifeng [3 ]
Gu, Xianfeng [4 ]
Guo, Kexin [5 ]
机构
[1] North China Univ Technol, Sch Informat Technol, Beijing 100041, Peoples R China
[2] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou 510335, Peoples R China
[3] Beihang Univ, Sch Comp Sci, Beijing 100083, Peoples R China
[4] Dept Comp Sci, Stony Brook, NY 11794 USA
[5] Beihang Univ, Hangzhou Innovat Inst, Hangzhou 310051, Peoples R China
基金
国家重点研发计划;
关键词
6D pose estimation; Heterogeneous information; Feature fusion; Unequal contributions; Point cloud; OBJECT; NETWORK;
D O I
10.1016/j.knosys.2024.111918
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most 6D pose studies often treat RGB and Depth features equally in fusion, potentially limiting model generalization, especially in multi -class tasks. This limitation arises from prevalent static map generation strategies that overlook discriminative features in downsampling sparse point clouds. Additionally, the commonly adopted direct concatenation approach in heterogeneous feature fusion often leads to an averaging effect, thereby reducing the effectiveness of each feature. To tackle these challenges, we propose an effective model for dynamic graph structure feature extraction, aimed at capturing richer features from point clouds. And we introduce an adaptive fusion method for heterogeneous features, which takes into account the unequal contributions to 6D pose estimation. Validation on benchmark datasets LineMOD and YCB-Video demonstrates its effectiveness for multi -class 6D pose estimation, surpassing existing fusion methods. Of particular significance, our method attains state-of-the-art (SOTA) results on the YCB-Video dataset.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Multi-class SAR feature space trajectory (FST) neural network class and pose estimation results
    Shenoy, R
    Casasent, D
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY IV, 1997, 3070 : 121 - 124
  • [32] HFF6D: Hierarchical Feature Fusion Network for Robust 6D Object Pose Tracking
    Liu, Jian
    Sun, Wei
    Liu, Chongpei
    Zhang, Xing
    Fan, Shimeng
    Wu, Wei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (11) : 7719 - 7731
  • [33] PoET: Pose Estimation Transformer for Single-View, Multi-Object 6D Pose Estimation
    Jantos, Thomas
    Hamdad, Mohamed Amin
    Granig, Wolfgang
    Weiss, Stephan
    Steinbrener, Jan
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1060 - 1070
  • [34] SyMFM6D: Symmetry-Aware Multi-Directional Fusion for Multi-View 6D Object Pose Estimation
    Duffhauss, Fabian
    Koch, Sebastian
    Ziesche, Hanna
    Vien, Ngo Anh
    Neumann, Gerhard
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (09) : 5315 - 5322
  • [35] NeRF-Feat: 6D Object Pose Estimation using Feature Rendering
    Vutukur, Shishir Reddy
    Brock, Heike
    Busam, Benjamin
    Birdal, Tolga
    Hutter, Andreas
    Ilic, Slobodan
    2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 1146 - 1155
  • [36] Multi-View Keypoints for Reliable 6D Object Pose Estimation
    Li, Alan
    Schoellig, Angela P.
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 6988 - 6994
  • [37] Coupled Iterative Refinement for 6D Multi-Object Pose Estimation
    Lipson, Lahav
    Teed, Zachary
    Goyal, Ankit
    Deng, Jia
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6718 - 6727
  • [38] 6D Object Pose Estimation with Attention Aware Bi-gated Fusion
    Wang, Laichao
    Lu, Weiding
    Tian, Yuan
    Guan, Yong
    Shao, Zhenzhou
    Shi, Zhiping
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT II, 2024, 14448 : 573 - 585
  • [39] HFT6D: Multimodal 6D object pose estimation based on hierarchical feature transformer
    An, Yunnan
    Yang, Dedong
    Song, Mengyuan
    MEASUREMENT, 2024, 224
  • [40] Images, normal maps and point clouds fusion decoder for 6D pose estimation
    Zhang, Hong-Bo
    Hong, Jia-Xin
    Liu, Jing-Hua
    Lei, Qing
    Du, Ji-Xiang
    INFORMATION FUSION, 2025, 117