A NONCONFORMING QUADRILATERAL FINITE ELEMENT APPROXIMATION TO NONLINEAR SCHRDINGER EQUATION

被引:0
|
作者
石东洋 [1 ]
廖歆 [2 ]
王乐乐 [1 ]
机构
[1] School of Mathematics and Statistics, Zhengzhou University
[2] Department of Mathematics and Physics, Zhengzhou University of
关键词
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
摘要
In this article, a nonconforming quadrilateral element(named modified quasiWilson element) is applied to solve the nonlinear schr¨odinger equation(NLSE). On the basis of a special character of this element, that is, its consistency error is of order O(h3) for broken H1-norm on arbitrary quadrilateral meshes, which is two order higher than its interpolation error, the optimal order error estimate and superclose property are obtained. Moreover,the global superconvergence result is deduced with the help of interpolation postprocessing technique. Finally, some numerical results are provided to verify the theoretical analysis.
引用
收藏
页码:584 / 592
页数:9
相关论文
共 50 条
  • [21] Nonlinear Schr?dinger Approximation for the Electron Euler-Poisson Equation
    Huimin LIU
    Xueke PU
    ChineseAnnalsofMathematics,SeriesB, 2023, (03) : 361 - 378
  • [22] Justification of the Nonlinear Schrödinger Approximation for a Quasilinear Klein–Gordon Equation
    Wolf-Patrick Düll
    Communications in Mathematical Physics, 2017, 355 : 1189 - 1207
  • [23] Nonconforming virtual element method for the Schrödinger eigenvalue problem
    Adak, Dibyendu
    Manzini, Gianmarco
    Vellojin, Jesus
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 182 : 213 - 235
  • [24] A quintic B-spline finite-element method for solving the nonlinear Schrödinger equation
    B. Saka
    Physics of Wave Phenomena, 2012, 20 : 107 - 117
  • [25] Superconvergence of a new energy dissipation finite element scheme for nonlinear Schrödinger equation with wave operator
    Wang, Junjun
    Shi, Dongyang
    Cao, Lina
    Pei, Jiaxuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 161 : 202 - 211
  • [26] Finite Temperature Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Yi-Heng Wu
    Qing-Cai Wang
    Yan Wang
    International Journal of Theoretical Physics, 2011, 50 : 2546 - 2551
  • [27] Existence of solutions to the nonlinear Schrödinger equation on locally finite graphs
    Zidong Qiu
    Yang Liu
    Archiv der Mathematik, 2023, 120 : 403 - 416
  • [28] Numerical Simulation of a Non-linear Singular Perturbed Schrödinger Equation Using Finite Element Approximation
    Manoj Kumar
    Akanksha Srivastava
    Garima Mishra
    National Academy Science Letters, 2013, 36 : 239 - 252
  • [29] Finite time blowup for the nonlinear Schrödinger equation with a delta potential
    Hauser, Brandon
    Holmes, John
    O'Keefe, Eoghan
    Raynor, Sarah
    Yu, Chuanyang
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (04): : 591 - 604
  • [30] Conservative finite difference schemes for the chiral nonlinear Schrödinger equation
    Mohammad S Ismail
    Khalil S Al-Basyouni
    Ayhan Aydin
    Boundary Value Problems, 2015