A NONCONFORMING QUADRILATERAL FINITE ELEMENT APPROXIMATION TO NONLINEAR SCHRDINGER EQUATION

被引:0
|
作者
石东洋 [1 ]
廖歆 [2 ]
王乐乐 [1 ]
机构
[1] School of Mathematics and Statistics, Zhengzhou University
[2] Department of Mathematics and Physics, Zhengzhou University of
关键词
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
摘要
In this article, a nonconforming quadrilateral element(named modified quasiWilson element) is applied to solve the nonlinear schr¨odinger equation(NLSE). On the basis of a special character of this element, that is, its consistency error is of order O(h3) for broken H1-norm on arbitrary quadrilateral meshes, which is two order higher than its interpolation error, the optimal order error estimate and superclose property are obtained. Moreover,the global superconvergence result is deduced with the help of interpolation postprocessing technique. Finally, some numerical results are provided to verify the theoretical analysis.
引用
收藏
页码:584 / 592
页数:9
相关论文
共 50 条
  • [31] Galerkin finite element method for nonlinear fractional Schrödinger equations
    Meng Li
    Chengming Huang
    Pengde Wang
    Numerical Algorithms, 2017, 74 : 499 - 525
  • [32] Finite difference scheme for a higher order nonlinear Schrödinger equation
    Marcelo M. Cavalcanti
    Wellington J. Corrêa
    Mauricio A. Sepúlveda C.
    Rodrigo Véjar-Asem
    Calcolo, 2019, 56
  • [33] Finite dimensional global attractor for a fractional nonlinear Schrödinger equation
    Olivier Goubet
    Ezzeddine Zahrouni
    Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [34] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [35] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [36] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [37] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [38] Nonconforming finite element method for a generalized nonlinear Schrodinger equation
    Zhang, Houchao
    Shi, Dongyang
    Li, Qingfu
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 377
  • [39] A quadrilateral nonconforming finite element for linear elasticity problem
    Mao, Shipeng
    Chen, Shaochun
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 28 (01) : 81 - 100
  • [40] A quadrilateral nonconforming finite element for linear elasticity problem
    Shipeng Mao
    Shaochun Chen
    Advances in Computational Mathematics, 2008, 28 : 81 - 100