Procrustes problem for the inverse eigenvalue problem of normal (skew) J-Hamiltonian matrices and normal J-symplectic matrices

被引:1
|
作者
Gigola, S. [1 ]
Lebtahi, L. [2 ,4 ]
Thome, N. [3 ]
机构
[1] Univ Buenos Aires, Fac Ingn, Dept Matemat, Buenos Aires, Argentina
[2] Univ Valencia, Dept Matematiques, Fac Ciencies Matematiques, Valencia, Spain
[3] Univ Politecn Valencia, Inst Univ Matemat Multidiscilpinar, Valencia, Spain
[4] Univ Valencia, Fac Matematiques, Calle Dr Moliner S-N, Burjassot 46100, Valencia, Spain
关键词
Inverse eigenvalue problem; (skew) J-Hamiltonian matrix; J-symplectic matrix; Moore-Penrose inverse; Procrustes problem; SOLVABILITY CONDITIONS;
D O I
10.1080/03081087.2024.2348119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A square complex matrix A is called (skew) J-Hamiltonian if AJ is (skew) Hermitian where J is a real normal matrix such that J(2 )= -I, where I is the identity matrix. In this paper, we solve the Procrustes problem to find normal (skew) J-Hamiltonian solutions for the inverse eigenvalue problem. In addition, a similar problem is investigated for normal J-symplectic matrices.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] On the inverse eigenvalue problem for periodic Jacobi matrices
    Heydari, M.
    Shahzadeh Fazeli, S. A.
    Karbassi, S. M.
    Hooshmandasl, M. R.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2020, 28 (09) : 1253 - 1264
  • [42] Inverse Eigenvalue Problems and Their Associated Approximation Problems for Matrices with J-(Skew) Centrosymmetry
    Liu, Zhong-Yun
    Duan, You-Cai
    Lai, Yun-Feng
    Zhang, Yu-Lin
    OPTIMIZATION AND SYSTEMS BIOLOGY, 2009, 11 : 329 - +
  • [43] Inverse Eigenvalue Problem of Bisymmetric Nonnegative Matrices
    Nazari, A. M.
    Aslami, P.
    Nezami, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (08)
  • [44] Inverse Eigenvalue Problem for a Kind of Acyclic Matrices
    Zarch, M. Babaei
    Fazeli, S. A. Shahzadeh
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A5): : 2531 - 2539
  • [45] On the inverse eigenvalue problem of symmetric nonnegative matrices
    Nazari, A. M.
    Mashayekhi, A.
    Nezami, A.
    MATHEMATICAL SCIENCES, 2020, 14 (01) : 11 - 19
  • [46] The inverse eigenvalue problem via orthogonal matrices
    Nazari, A.M.
    Sepehrian, B.
    Jabari, M.
    World Academy of Science, Engineering and Technology, 2010, 69 : 71 - 76
  • [47] An inverse eigenvalue problem for periodic Jacobi matrices
    Xu, Ying-Hong
    Jiang, Er-Xiong
    INVERSE PROBLEMS, 2007, 23 (01) : 165 - 181
  • [48] Inverse Eigenvalue Problem of Unitary Hessenberg Matrices
    Wu, Chunhong
    Lu, Linzhang
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2009, 2009
  • [49] Hochstadt inverse eigenvalue problem for Jacobi matrices
    Cojuhari, P. A.
    Nizhnik, L. P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (01) : 439 - 451
  • [50] A Kind of the Inverse Eigenvalue problem for Tridiagonal Matrices
    Li Zhi-bin
    Zhao Xin-xin
    ADVANCING KNOWLEDGE DISCOVERY AND DATA MINING TECHNOLOGIES, PROCEEDINGS, 2009, : 68 - 71