Procrustes problem for the inverse eigenvalue problem of normal (skew) J-Hamiltonian matrices and normal J-symplectic matrices
被引:1
|
作者:
Gigola, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Fac Ingn, Dept Matemat, Buenos Aires, ArgentinaUniv Buenos Aires, Fac Ingn, Dept Matemat, Buenos Aires, Argentina
Gigola, S.
[1
]
Lebtahi, L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Valencia, Dept Matematiques, Fac Ciencies Matematiques, Valencia, Spain
Univ Valencia, Fac Matematiques, Calle Dr Moliner S-N, Burjassot 46100, Valencia, SpainUniv Buenos Aires, Fac Ingn, Dept Matemat, Buenos Aires, Argentina
Lebtahi, L.
[2
,4
]
Thome, N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Valencia, Inst Univ Matemat Multidiscilpinar, Valencia, SpainUniv Buenos Aires, Fac Ingn, Dept Matemat, Buenos Aires, Argentina
Thome, N.
[3
]
机构:
[1] Univ Buenos Aires, Fac Ingn, Dept Matemat, Buenos Aires, Argentina
[2] Univ Valencia, Dept Matematiques, Fac Ciencies Matematiques, Valencia, Spain
A square complex matrix A is called (skew) J-Hamiltonian if AJ is (skew) Hermitian where J is a real normal matrix such that J(2 )= -I, where I is the identity matrix. In this paper, we solve the Procrustes problem to find normal (skew) J-Hamiltonian solutions for the inverse eigenvalue problem. In addition, a similar problem is investigated for normal J-symplectic matrices.