Procrustes problem for the inverse eigenvalue problem of normal (skew) J-Hamiltonian matrices and normal J-symplectic matrices

被引:1
|
作者
Gigola, S. [1 ]
Lebtahi, L. [2 ,4 ]
Thome, N. [3 ]
机构
[1] Univ Buenos Aires, Fac Ingn, Dept Matemat, Buenos Aires, Argentina
[2] Univ Valencia, Dept Matematiques, Fac Ciencies Matematiques, Valencia, Spain
[3] Univ Politecn Valencia, Inst Univ Matemat Multidiscilpinar, Valencia, Spain
[4] Univ Valencia, Fac Matematiques, Calle Dr Moliner S-N, Burjassot 46100, Valencia, Spain
关键词
Inverse eigenvalue problem; (skew) J-Hamiltonian matrix; J-symplectic matrix; Moore-Penrose inverse; Procrustes problem; SOLVABILITY CONDITIONS;
D O I
10.1080/03081087.2024.2348119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A square complex matrix A is called (skew) J-Hamiltonian if AJ is (skew) Hermitian where J is a real normal matrix such that J(2 )= -I, where I is the identity matrix. In this paper, we solve the Procrustes problem to find normal (skew) J-Hamiltonian solutions for the inverse eigenvalue problem. In addition, a similar problem is investigated for normal J-symplectic matrices.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] An inverse eigenvalue problem for Jacobi matrices
    Jiang, EX
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (05) : 569 - 584
  • [32] Inverse eigenvalue problem of cell matrices
    Sreyaun Khim
    Kijti Rodtes
    Czechoslovak Mathematical Journal, 2019, 69 : 1015 - 1027
  • [33] An inverse eigenvalue problem for Jacobi matrices
    Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    不详
    Math. Probl. Eng.,
  • [35] An inverse eigenvalue problem for Jacobi matrices with a missing eigenvalue
    He, Bin
    Wang, Min
    Wei, Guangsheng
    APPLIED MATHEMATICS LETTERS, 2022, 133
  • [36] The solvability conditions for the inverse eigenvalue problem of Hermitian-generalized Hamiltonian matrices
    Zhang, ZZ
    Hu, XY
    Zhang, L
    INVERSE PROBLEMS, 2002, 18 (05) : 1369 - 1376
  • [37] Exceptional points, non-normal matrices, hierarchy of spin matrices and an eigenvalue problem
    Steeb, Willi-Hans
    Hardy, Yorick
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (11):
  • [38] ON AN INVERSE EIGENVALUE PROBLEM FOR UNITARY HESSENBERG MATRICES
    AMMAR, GS
    HE, CY
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 218 : 263 - 271
  • [39] Construction of nonnegative matrices and the inverse eigenvalue problem
    Smigoc, H
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (02): : 85 - 96
  • [40] An inverse eigenvalue problem for symmetrical tridiagonal matrices
    Pickmann, Hubert
    Soto, Ricardo L.
    Egana, J.
    Salas, Mario
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (05) : 699 - 708