Procrustes problem for the inverse eigenvalue problem of normal (skew) J-Hamiltonian matrices and normal J-symplectic matrices

被引:1
|
作者
Gigola, S. [1 ]
Lebtahi, L. [2 ,4 ]
Thome, N. [3 ]
机构
[1] Univ Buenos Aires, Fac Ingn, Dept Matemat, Buenos Aires, Argentina
[2] Univ Valencia, Dept Matematiques, Fac Ciencies Matematiques, Valencia, Spain
[3] Univ Politecn Valencia, Inst Univ Matemat Multidiscilpinar, Valencia, Spain
[4] Univ Valencia, Fac Matematiques, Calle Dr Moliner S-N, Burjassot 46100, Valencia, Spain
关键词
Inverse eigenvalue problem; (skew) J-Hamiltonian matrix; J-symplectic matrix; Moore-Penrose inverse; Procrustes problem; SOLVABILITY CONDITIONS;
D O I
10.1080/03081087.2024.2348119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A square complex matrix A is called (skew) J-Hamiltonian if AJ is (skew) Hermitian where J is a real normal matrix such that J(2 )= -I, where I is the identity matrix. In this paper, we solve the Procrustes problem to find normal (skew) J-Hamiltonian solutions for the inverse eigenvalue problem. In addition, a similar problem is investigated for normal J-symplectic matrices.
引用
收藏
页数:23
相关论文
共 50 条