GLOBAL STABILITY OF REACTION-DIFFUSION EQUATIONS WITH FRACTIONAL LAPLACIAN OPERATOR AND APPLICATIONS IN BIOLOGY

被引:0
|
作者
El Hassani, Abdelaziz [1 ]
Hattaf, Khalid [1 ,2 ]
Achtaich, Naceur [1 ]
机构
[1] Hassan II Univ Casablanca, Fac Sci Ben MSick, Lab Anal Modeling & Simulat LAMS, POB 7955 Sidi Othman, Casablanca, Morocco
[2] Ctr Reg Metiers Educ & Format CRMEF, Equipe Rech Modelisat & Enseignement Math ERMEM, Casablanca, Morocco
关键词
fractional diffusion; biological systems; asymptotic stability; Lyapunov functional; EPIDEMIC MODEL; HBV MODEL; DYNAMICS;
D O I
10.28919/cmbn/7485
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main objective of this paper is to develop an efficient method to establish the global stability of some reaction-diffusion equations with fractional Laplacian operator. This method is based on Lyapunov functionals for ordinary differential equations (ODEs). A classical case of such types of fractional spacial diffusion equations is rigorously studied. Moreover, the developed method is applied to some biological systems arising from epidemiology and cancerology.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] A hybrid approach for piecewise fractional reaction-diffusion equations
    Heydari, M. H.
    Zhagharian, Sh.
    RESULTS IN PHYSICS, 2023, 51
  • [42] Multiplicity result for a stationary fractional reaction-diffusion equations
    Torres Ledesma, Cesar E.
    TBILISI MATHEMATICAL JOURNAL, 2016, 9 (02): : 115 - 127
  • [43] Nonlocal Reaction-Diffusion Equations in Biomedical Applications
    Banerjee, M.
    Kuznetsov, M.
    Udovenko, O.
    Volpert, V.
    ACTA BIOTHEORETICA, 2022, 70 (02)
  • [44] Reaction-Diffusion Equations with Applications to Economic Systems
    Ganguly, Srinjoy
    Neogi, Upasana
    Chakrabarti, Anindya S.
    Chakraborti, Anirban
    ECONOPHYSICS AND SOCIOPHYSICS: RECENT PROGRESS AND FUTURE DIRECTIONS, 2017, : 131 - 144
  • [45] Global solution and global orbit to reaction-diffusion equation for fractional Dirichlet-to-Neumann operator with subcritical exponent
    Tan, Zhong
    Xie, Minghong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) : 1878 - 1895
  • [46] Global stability in a nonlocal reaction-diffusion equation
    Finkelshtein, Dmitri
    Kondratiev, Yuri
    Molchanov, Stanislav
    Tkachov, Pasha
    STOCHASTICS AND DYNAMICS, 2018, 18 (05)
  • [47] FRACTIONAL DIFFERENTIAL EQUATIONS OF A REACTION-DIFFUSION SIR MODEL INVOLVING THE CAPUTO-FRACTIONAL TIME-DERIVATIVE AND A NONLINEAR DIFFUSION OPERATOR
    Zinihi, Achraf
    Ammi, Moulay rchid sidi
    Torres, Delfim f. m.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2025,
  • [48] Fractional reaction-diffusion
    Henry, BI
    Wearne, SL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (3-4) : 448 - 455
  • [49] On Stability of a Fractional Discrete Reaction-Diffusion Epidemic Model
    Alsayyed, Omar
    Hioual, Amel
    Gharib, Gharib M.
    Abualhomos, Mayada
    Al-Tarawneh, Hassan
    Alsauodi, Maha S.
    Abu-Alkishik, Nabeela
    Al-Husban, Abdallah
    Ouannas, Adel
    FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [50] Asymptotic stability of an epidemiological fractional reaction-diffusion model
    Djebara, Lamia
    Abdelmalek, Salem
    Bendoukha, Samir
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)