GLOBAL STABILITY OF REACTION-DIFFUSION EQUATIONS WITH FRACTIONAL LAPLACIAN OPERATOR AND APPLICATIONS IN BIOLOGY

被引:0
|
作者
El Hassani, Abdelaziz [1 ]
Hattaf, Khalid [1 ,2 ]
Achtaich, Naceur [1 ]
机构
[1] Hassan II Univ Casablanca, Fac Sci Ben MSick, Lab Anal Modeling & Simulat LAMS, POB 7955 Sidi Othman, Casablanca, Morocco
[2] Ctr Reg Metiers Educ & Format CRMEF, Equipe Rech Modelisat & Enseignement Math ERMEM, Casablanca, Morocco
关键词
fractional diffusion; biological systems; asymptotic stability; Lyapunov functional; EPIDEMIC MODEL; HBV MODEL; DYNAMICS;
D O I
10.28919/cmbn/7485
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main objective of this paper is to develop an efficient method to establish the global stability of some reaction-diffusion equations with fractional Laplacian operator. This method is based on Lyapunov functionals for ordinary differential equations (ODEs). A classical case of such types of fractional spacial diffusion equations is rigorously studied. Moreover, the developed method is applied to some biological systems arising from epidemiology and cancerology.
引用
收藏
页数:22
相关论文
共 50 条