Structural stability for scalar reaction-diffusion equations

被引:0
|
作者
Lee, Jihoon [1 ]
Pires, Leonardo [2 ]
机构
[1] Chonnam Natl Univ, Gwangju, South Korea
[2] Univ Estadual Ponta Grossa, Ponta Grossa, Parana, Brazil
关键词
Morse-Smale semiflows; rate of convergence of attractors; structural stability; invariant manifolds; Gromov-Hausdorff distance; ATTRACTORS; CONVERGENCE; SYSTEMS;
D O I
10.14232/ejqtde.2023.1.54
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the structural stability for a family of scalar reaction-diffusion equations. Our arguments consist of using invariant manifold theorem to reduce the problem to a finite dimension and then, we use the structural stability of Morse-Smale flows in a finite dimension to obtain the corresponding result in infinite dimension. As a consequence, we obtain the optimal rate of convergence of the attractors and estimate the Gromov-Hausdorff distance of the attractors using continuous e-isometries.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] ENTROPY OF SCALAR REACTION-DIFFUSION EQUATIONS
    Slijepcevic, Sinisa
    MATHEMATICA BOHEMICA, 2014, 139 (04): : 597 - 605
  • [2] Spirals in scalar reaction-diffusion equations
    Dellnitz, M
    Golubitsky, M
    Hohmann, A
    Stewart, I
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (06): : 1487 - 1501
  • [3] Reaction-diffusion and phase waves occurring in a class of scalar reaction-diffusion equations
    Needham, DJ
    Barnes, AN
    NONLINEARITY, 1999, 12 (01) : 41 - 58
  • [4] Transversality in scalar reaction-diffusion equations on a circle
    Czaja, Radoslaw
    Rocha, Carlos
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (03) : 692 - 721
  • [5] NOISE AND STABILITY IN REACTION-DIFFUSION EQUATIONS
    Lv, Guangying
    Wei, Jinlong
    Zou, Guang-an
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2022, 12 (01) : 147 - 168
  • [6] Noncompact global attractors for scalar reaction-diffusion equations
    Pimentel, Juliana
    Rocha, Carlos
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2015, 9 (02): : 299 - 310
  • [7] The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations: algebraic decay rates
    Leach, JA
    Needham, DJ
    Kay, AL
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 167 (3-4) : 153 - 182
  • [8] A principle of reduced stability for reaction-diffusion equations
    Smiley, MW
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 142 (02) : 277 - 290
  • [9] Global stability for reaction-diffusion equations in biology
    Hattaf, Khalid
    Yousfi, Noura
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (08) : 1488 - 1497