Structural stability for scalar reaction-diffusion equations

被引:0
|
作者
Lee, Jihoon [1 ]
Pires, Leonardo [2 ]
机构
[1] Chonnam Natl Univ, Gwangju, South Korea
[2] Univ Estadual Ponta Grossa, Ponta Grossa, Parana, Brazil
关键词
Morse-Smale semiflows; rate of convergence of attractors; structural stability; invariant manifolds; Gromov-Hausdorff distance; ATTRACTORS; CONVERGENCE; SYSTEMS;
D O I
10.14232/ejqtde.2023.1.54
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the structural stability for a family of scalar reaction-diffusion equations. Our arguments consist of using invariant manifold theorem to reduce the problem to a finite dimension and then, we use the structural stability of Morse-Smale flows in a finite dimension to obtain the corresponding result in infinite dimension. As a consequence, we obtain the optimal rate of convergence of the attractors and estimate the Gromov-Hausdorff distance of the attractors using continuous e-isometries.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条