Multiplicity result for a stationary fractional reaction-diffusion equations

被引:1
|
作者
Torres Ledesma, Cesar E. [1 ]
机构
[1] Univ Nacl Trujillo, Dept Math, Av Juan Pablo 2 S-N, Trujillo, Peru
来源
TBILISI MATHEMATICAL JOURNAL | 2016年 / 9卷 / 02期
关键词
Riemann-Liouville fractional derivatives; fractional derivative space; boundary value problem; genus; variational methods;
D O I
10.1515/tmj-2016-0024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the stationary fractional reaction-diffusion equations with RiemannLiouville boundary conditions where 0 < alpha, beta < 1 and f is an element of C([0, T] x R, R). Under suitable conditions on the nonline rity, we study the multiplicity of k solutions of (0,1) by using the genus in the critical point theory.
引用
收藏
页码:115 / 127
页数:13
相关论文
共 50 条
  • [1] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [2] Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 289 - 296
  • [3] ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    MATEMATICHE, 2013, 68 (01): : 23 - 32
  • [4] Spatially stochastic reaction in stationary Reaction-Diffusion equations
    Bellini, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (12): : 1429 - 1432
  • [5] Multiplicity of supercritical fronts for reaction-diffusion equations in cylinders
    Gordon, P. V.
    Muratov, C. B.
    Novaga, M.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 47 (3-4) : 683 - 709
  • [6] On the Steady Solutions of Fractional Reaction-Diffusion Equations
    Fazli, Hossein
    Bahrami, Fariba
    FILOMAT, 2017, 31 (06) : 1655 - 1664
  • [7] On the Speed of Spread for Fractional Reaction-Diffusion Equations
    Engler, Hans
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 2010
  • [8] Numerical solutions for fractional reaction-diffusion equations
    Baeumer, Boris
    Kovacs, Mihaly
    Meerschaert, Mark M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (10) : 2212 - 2226
  • [9] Solution of Generalized Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 (3)
  • [10] Dynamics of Fractional Delayed Reaction-Diffusion Equations
    Liu, Linfang
    Nieto, Juan J.
    ENTROPY, 2023, 25 (06)