Multiplicity result for a stationary fractional reaction-diffusion equations

被引:1
|
作者
Torres Ledesma, Cesar E. [1 ]
机构
[1] Univ Nacl Trujillo, Dept Math, Av Juan Pablo 2 S-N, Trujillo, Peru
来源
TBILISI MATHEMATICAL JOURNAL | 2016年 / 9卷 / 02期
关键词
Riemann-Liouville fractional derivatives; fractional derivative space; boundary value problem; genus; variational methods;
D O I
10.1515/tmj-2016-0024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the stationary fractional reaction-diffusion equations with RiemannLiouville boundary conditions where 0 < alpha, beta < 1 and f is an element of C([0, T] x R, R). Under suitable conditions on the nonline rity, we study the multiplicity of k solutions of (0,1) by using the genus in the critical point theory.
引用
收藏
页码:115 / 127
页数:13
相关论文
共 50 条
  • [31] A reliable numerical method for solving fractional reaction-diffusion equations
    Yadav, Supriya
    Kumar, Devendra
    Nisar, Kottakkaran Sooppy
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (02)
  • [32] Fractional Reaction-Diffusion Equations for Modelling Complex Biological Patterns
    Akil, Ku Azlina Ku
    Muniandy, Sithi V.
    Lim, Einly
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2012, 8 (03): : 126 - 130
  • [33] Existence of Peregrine type solutions in fractional reaction-diffusion equations
    Besteiro, Agustin
    Rial, Diego
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (09) : 1 - 9
  • [34] Optimal control of fractional reaction-diffusion equations with Poisson jumps
    Durga, N.
    Muthukumar, P.
    JOURNAL OF ANALYSIS, 2019, 27 (02): : 605 - 621
  • [35] Fractional differential quadrature techniques for fractional order Cauchy reaction-diffusion equations
    Ragb, Ola
    Wazwaz, Abdul-Majid
    Mohamed, Mokhtar
    Matbuly, M. S.
    Salah, Mohamed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) : 10216 - 10233
  • [36] A shadowing result with applications to finite element approximation of reaction-diffusion equations
    Larsson, S
    Sanz-Serna, JM
    MATHEMATICS OF COMPUTATION, 1999, 68 (225) : 55 - 72
  • [37] Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: Application to the theory of Neolithic transition
    Vlad, MO
    Ross, J
    PHYSICAL REVIEW E, 2002, 66 (06):
  • [38] Fractional reaction-diffusion equation
    Seki, K
    Wojcik, M
    Tachiya, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04): : 2165 - 2170
  • [39] On a fractional reaction-diffusion equation
    de Andrade, Bruno
    Viana, Arlucio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [40] Computational solutions of unified fractional reaction-diffusion equations with composite fractional time derivative
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 27 (1-3) : 1 - 11