Multiplicity result for a stationary fractional reaction-diffusion equations

被引:1
|
作者
Torres Ledesma, Cesar E. [1 ]
机构
[1] Univ Nacl Trujillo, Dept Math, Av Juan Pablo 2 S-N, Trujillo, Peru
来源
TBILISI MATHEMATICAL JOURNAL | 2016年 / 9卷 / 02期
关键词
Riemann-Liouville fractional derivatives; fractional derivative space; boundary value problem; genus; variational methods;
D O I
10.1515/tmj-2016-0024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the stationary fractional reaction-diffusion equations with RiemannLiouville boundary conditions where 0 < alpha, beta < 1 and f is an element of C([0, T] x R, R). Under suitable conditions on the nonline rity, we study the multiplicity of k solutions of (0,1) by using the genus in the critical point theory.
引用
收藏
页码:115 / 127
页数:13
相关论文
共 50 条
  • [41] Solutions of fractional reaction-diffusion equations in terms of the H-function
    Haubold, H. J.
    Mathai, A. M.
    Saxena, R. K.
    BULLETIN OF THE ASTRONOMICAL SOCIETY OF INDIA, 2007, 35 (04): : 681 - 689
  • [42] Regularity of random attractors for fractional stochastic reaction-diffusion equations on Rn
    Gu, Anhui
    Li, Dingshi
    Wang, Bixiang
    Yang, Han
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (12) : 7094 - 7137
  • [43] Numerical solutions of multi-term fractional reaction-diffusion equations
    Zou, Leqiang
    Zhang, Yanzi
    AIMS MATHEMATICS, 2025, 10 (01): : 777 - 792
  • [44] Fourier spectral methods for fractional-in-space reaction-diffusion equations
    Bueno-Orovio, Alfonso
    Kay, David
    Burrage, Kevin
    BIT NUMERICAL MATHEMATICS, 2014, 54 (04) : 937 - 954
  • [45] Fourier spectral methods for fractional-in-space reaction-diffusion equations
    Alfonso Bueno-Orovio
    David Kay
    Kevin Burrage
    BIT Numerical Mathematics, 2014, 54 : 937 - 954
  • [46] Analysis and numerics of traveling waves for asymmetric fractional reaction-diffusion equations
    Achleitner, Franz
    Kuehn, Christian
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2015, 6 (02)
  • [48] AN ITERATIVE APPROACH FOR SOLVING FRACTIONAL ORDER CAUCHY REACTION-DIFFUSION EQUATIONS
    Kumar, Manoj
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2023, 22 (03) : 19 - 32
  • [49] Comparison of Numerical Solutions of Time-Fractional Reaction-Diffusion Equations
    Kurulay, Muhammet
    Bayram, Mustafa
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2012, 6 : 49 - 59
  • [50] CONTINUOUS DATA ASSIMILATION AND FEEDBACK CONTROL OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Lv, Guangying
    Shan, Yeqing
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (04): : 1151 - 1161