Artificial intelligence-driven assessment of salt caverns for underground hydrogen storage in Poland

被引:8
|
作者
Derakhshani, Reza [1 ,2 ]
Lankof, Leszek [3 ]
Ghaseminejad, Amin [4 ]
Zaresefat, Mojtaba [5 ]
机构
[1] Univ Utrecht, Dept Earth Sci, Utrecht, Netherlands
[2] Shahid Bahonar Univ Kerman, Dept Geol, Kerman, Iran
[3] Polish Acad Sci, Mineral & Energy Econ Res Inst, Wybickiego 7A, PL-31261 Krakow, Poland
[4] Shahid Bahonar Univ Kerman, Fac Management & Econ, Dept Econ, Kerman, Iran
[5] Univ Utrecht, Copernicus Inst Sustainable Dev, Utrecht, Netherlands
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
MACHINE LEARNING-MODELS; SOLUBILITY; PREDICTION; SHAPE;
D O I
10.1038/s41598-024-64020-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study explores the feasibility of utilizing bedded salt deposits as sites for underground hydrogen storage. We introduce an innovative artificial intelligence framework that applies multi-criteria decision-making and spatial data analysis to identify the most suitable locations for storing hydrogen in salt caverns. Our approach integrates a unified platform with eight distinct machine-learning algorithms-KNN, SVM, LightGBM, XGBoost, MLP, CatBoost, GBR, and MLR-creating rock salt deposit suitability maps for hydrogen storage. The performance of these algorithms was evaluated using various metrics, including Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Correlation Coefficient (R2), compared against an actual dataset. The CatBoost model demonstrated exceptional performance, achieving an R2 of 0.88, MSE of 0.0816, MAE of 0.1994, RMSE of 0.2833, and MAPE of 0.0163. The novel methodology, leveraging advanced machine learning techniques, offers a unique perspective in assessing the potential of underground hydrogen storage. This approach is a valuable asset for various stakeholders, including government bodies, geological services, renewable energy facilities, and the chemical/petrochemical industry, aiding them in identifying optimal locations for hydrogen storage.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Artificial intelligence-driven design of ß-secretase 1 inhibitors
    Njirjak, Marko
    Kalafatovic, Daniela
    Mausa, Goran
    JOURNAL OF PEPTIDE SCIENCE, 2024, 30
  • [42] Artificial Intelligence-Driven Eye Disease Classification Model
    Sait, Abdul Rahaman Wahab
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [43] The ethics of artificial intelligence-driven diagnostic testing in dermatology
    Muzumdar, Sonal
    Grant-Kels, Jane M.
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2024, 91 (06) : 1307 - 1308
  • [44] The ethical challenges of artificial intelligence-driven digital pathology
    McKay, Francis
    Williams, Bethany J.
    Prestwich, Graham
    Bansal, Daljeet
    Hallowell, Nina
    Treanor, Darren
    JOURNAL OF PATHOLOGY CLINICAL RESEARCH, 2022, 8 (03): : 209 - 216
  • [45] Evolution of Gas Permeability of Rock Salt Under Different Loading Conditions and Implications on the Underground Hydrogen Storage in Salt Caverns
    Grgic, D.
    Al Sahyouni, F.
    Golfier, F.
    Moumni, M.
    Schoumacker, L.
    ROCK MECHANICS AND ROCK ENGINEERING, 2022, 55 (02) : 691 - 714
  • [46] Artificial intelligence-driven disruption in science production ahead
    de Miguel, Sergio
    SILVA FENNICA, 2023, 57 (01)
  • [47] Evolution of Gas Permeability of Rock Salt Under Different Loading Conditions and Implications on the Underground Hydrogen Storage in Salt Caverns
    D. Grgic
    F. Al Sahyouni
    F. Golfier
    M. Moumni
    L. Schoumacker
    Rock Mechanics and Rock Engineering, 2022, 55 : 691 - 714
  • [48] Geomechanical Analysis of Salt Caverns Used for Underground Storage of Hydrogen Utilised in Meeting Peak Energy Demands
    Passaris, Evan
    Yfantis, Georgios
    ENERGY GEOTECHNICS, SEG-2018, 2019, : 179 - 184
  • [49] Artificial Intelligence-Driven Genetic Algorithm Optimization for Language Learning and Assessment in Medical Research
    Yu D.
    Xu T.
    Computer-Aided Design and Applications, 2024, 21 (S24): : 89 - 104
  • [50] Recommendations to overcome barriers to the use of artificial intelligence-driven evidence in health technology assessment
    Zemplenyi, Antal
    Tachkov, Konstantin
    Balkanyi, Laszlo
    Nemeth, Bertalan
    Petyko, Zsuzsanna Ida
    Petrova, Guenka
    Czech, Marcin
    Dawoud, Dalia
    Goettsch, Wim
    Ibarluzea, Inaki Gutierrez
    Hren, Rok
    Knies, Saskia
    Lorenzovici, Laszlo
    Maravic, Zorana
    Piniazhko, Oresta
    Savova, Alexandra
    Manova, Manoela
    Tesar, Tomas
    Zerovnik, Spela
    Kalo, Zoltan
    FRONTIERS IN PUBLIC HEALTH, 2023, 11