Artificial intelligence-driven assessment of salt caverns for underground hydrogen storage in Poland

被引:8
|
作者
Derakhshani, Reza [1 ,2 ]
Lankof, Leszek [3 ]
Ghaseminejad, Amin [4 ]
Zaresefat, Mojtaba [5 ]
机构
[1] Univ Utrecht, Dept Earth Sci, Utrecht, Netherlands
[2] Shahid Bahonar Univ Kerman, Dept Geol, Kerman, Iran
[3] Polish Acad Sci, Mineral & Energy Econ Res Inst, Wybickiego 7A, PL-31261 Krakow, Poland
[4] Shahid Bahonar Univ Kerman, Fac Management & Econ, Dept Econ, Kerman, Iran
[5] Univ Utrecht, Copernicus Inst Sustainable Dev, Utrecht, Netherlands
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
MACHINE LEARNING-MODELS; SOLUBILITY; PREDICTION; SHAPE;
D O I
10.1038/s41598-024-64020-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study explores the feasibility of utilizing bedded salt deposits as sites for underground hydrogen storage. We introduce an innovative artificial intelligence framework that applies multi-criteria decision-making and spatial data analysis to identify the most suitable locations for storing hydrogen in salt caverns. Our approach integrates a unified platform with eight distinct machine-learning algorithms-KNN, SVM, LightGBM, XGBoost, MLP, CatBoost, GBR, and MLR-creating rock salt deposit suitability maps for hydrogen storage. The performance of these algorithms was evaluated using various metrics, including Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Correlation Coefficient (R2), compared against an actual dataset. The CatBoost model demonstrated exceptional performance, achieving an R2 of 0.88, MSE of 0.0816, MAE of 0.1994, RMSE of 0.2833, and MAPE of 0.0163. The novel methodology, leveraging advanced machine learning techniques, offers a unique perspective in assessing the potential of underground hydrogen storage. This approach is a valuable asset for various stakeholders, including government bodies, geological services, renewable energy facilities, and the chemical/petrochemical industry, aiding them in identifying optimal locations for hydrogen storage.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A Thermodynamic Model for Carbon Dioxide Storage in Underground Salt Caverns
    Zhang, Yi
    Li, Wenjing
    Chen, Guodong
    ENERGIES, 2022, 15 (12)
  • [32] Hydrocarbon production and storage using offshore underground salt caverns
    Costa, A. M.
    Amaral, C. S.
    Poiate Jr, E.
    MECHANICAL BEHAVIOR OF SALT VIII, 2015, : 209 - 216
  • [33] Assessment of the potential for underground hydrogen storage in bedded salt formation
    Lankof, Leszek
    Tarkowski, Radoslaw
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (38) : 19479 - 19492
  • [34] ARTIFICIAL INTELLIGENCE-DRIVEN AUTONOMOUS ROBOT FOR PRECISION AGRICULTURE
    Beloev, Ivan
    Kinaneva, Diyana
    Georgiev, Georgi
    Hristov, Georgi
    Zahariev, Plamen
    ACTA TECHNOLOGICA AGRICULTURAE, 2021, 24 (01) : 48 - 54
  • [35] Towards Establishing Artificial Intelligence-driven Cancer Medicine
    Kobayashi, Kazuma
    Miyake, Mototaka
    Watanabe, Hirokazu
    Mihara, Naoki
    Hamamoto, Ryuji
    CANCER SCIENCE, 2021, 112 : 527 - 527
  • [36] The Future Role of Radiologists in the Artificial Intelligence-Driven Hospital
    Sedaghat, Sam
    ANNALS OF BIOMEDICAL ENGINEERING, 2024, 52 (09) : 2316 - 2318
  • [37] Advancements in artificial intelligence-driven techniques for interventional cardiology
    Rudnicka, Zofia
    Pregowska, Agnieszka
    Gladys, Kinga
    Perkins, Mark
    Proniewska, Klaudia
    CARDIOLOGY JOURNAL, 2024, 31 (02) : 321 - 341
  • [38] Artificial intelligence-driven prediction of multiple drug interactions
    Chen, Siqi
    Li, Tiancheng
    Yang, Luna
    Zhai, Fei
    Jiang, Xiwei
    Xiang, Rongwu
    Ling, Guixia
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
  • [39] Artificial Intelligence-Driven Wireless Sensing for Health Management
    Toruner, Merih Deniz
    Shi, Victoria
    Sollee, John
    Hsu, Wen-Chi
    Yu, Guangdi
    Dai, Yu-Wei
    Merlo, Christian
    Suresh, Karthik
    Jiao, Zhicheng
    Wang, Xuyu
    Mao, Shiwen
    Bai, Harrison
    BIOENGINEERING-BASEL, 2025, 12 (03):
  • [40] Artificial intelligence-driven health research innovations: Proteinsciences
    Furui Liu
    Guiquan Zhang
    Zhi Liu
    Chao Li
    Xingxu Huang
    Medicine Plus, 2024, 1 (03) : 39 - 43