Artificial intelligence-driven assessment of salt caverns for underground hydrogen storage in Poland

被引:8
|
作者
Derakhshani, Reza [1 ,2 ]
Lankof, Leszek [3 ]
Ghaseminejad, Amin [4 ]
Zaresefat, Mojtaba [5 ]
机构
[1] Univ Utrecht, Dept Earth Sci, Utrecht, Netherlands
[2] Shahid Bahonar Univ Kerman, Dept Geol, Kerman, Iran
[3] Polish Acad Sci, Mineral & Energy Econ Res Inst, Wybickiego 7A, PL-31261 Krakow, Poland
[4] Shahid Bahonar Univ Kerman, Fac Management & Econ, Dept Econ, Kerman, Iran
[5] Univ Utrecht, Copernicus Inst Sustainable Dev, Utrecht, Netherlands
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
MACHINE LEARNING-MODELS; SOLUBILITY; PREDICTION; SHAPE;
D O I
10.1038/s41598-024-64020-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study explores the feasibility of utilizing bedded salt deposits as sites for underground hydrogen storage. We introduce an innovative artificial intelligence framework that applies multi-criteria decision-making and spatial data analysis to identify the most suitable locations for storing hydrogen in salt caverns. Our approach integrates a unified platform with eight distinct machine-learning algorithms-KNN, SVM, LightGBM, XGBoost, MLP, CatBoost, GBR, and MLR-creating rock salt deposit suitability maps for hydrogen storage. The performance of these algorithms was evaluated using various metrics, including Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Correlation Coefficient (R2), compared against an actual dataset. The CatBoost model demonstrated exceptional performance, achieving an R2 of 0.88, MSE of 0.0816, MAE of 0.1994, RMSE of 0.2833, and MAPE of 0.0163. The novel methodology, leveraging advanced machine learning techniques, offers a unique perspective in assessing the potential of underground hydrogen storage. This approach is a valuable asset for various stakeholders, including government bodies, geological services, renewable energy facilities, and the chemical/petrochemical industry, aiding them in identifying optimal locations for hydrogen storage.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Artificial intelligence-driven cardiac amyloidosis screening
    Abdaem, Jacob
    Miller, Robert
    LANCET DIGITAL HEALTH, 2024, 6 (04): : e231 - e232
  • [22] The rise of artificial intelligence-driven health communication
    Golan, Roei
    Reddy, Rohit
    Ramasamy, Ranjith
    TRANSLATIONAL ANDROLOGY AND UROLOGY, 2024, 13 (02) : 356 - 358
  • [23] Artificial intelligence-driven antimicrobial peptide discovery
    Szymczak, Paulina
    Szczurek, Ewa
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 83
  • [24] The Future of Research in an Artificial Intelligence-Driven World
    Kulkarni, Mukta
    Mantere, Saku
    Vaara, Eero
    van den Broek, Elmira
    Pachidi, Stella
    Glaser, Vern L.
    Gehman, Joel
    Petriglieri, Gianpiero
    Lindebaum, Dirk
    Cameron, Lindsey D.
    Rahman, Hatim A.
    Islam, Gazi
    Greenwood, Michelle
    JOURNAL OF MANAGEMENT INQUIRY, 2024, 33 (03) : 207 - 229
  • [25] Artificial Intelligence-Driven Standardization of Meibography Images
    Yeh, Chun-Hsiao
    Graham, Andrew D.
    Yu, Stella
    Lin, Meng C.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [26] Artificial intelligence-driven design of fuel mixtures
    Nursulu Kuzhagaliyeva
    Samuel Horváth
    John Williams
    Andre Nicolle
    S. Mani Sarathy
    Communications Chemistry, 5
  • [27] Artificial Intelligence-Driven Diagnosis of Pancreatic Cancer
    Hameed, Bahrudeen Shahul
    Krishnan, Uma Maheswari
    CANCERS, 2022, 14 (21)
  • [28] Artificial intelligence-driven design of fuel mixtures
    Kuzhagaliyeva, Nursulu
    Horvath, Samuel
    Williams, John
    Nicolle, Andre
    Sarathy, S. Mani
    COMMUNICATIONS CHEMISTRY, 2022, 5 (01)
  • [30] Underground hydrogen storage in salt caverns: Recent advances, modeling approaches, barriers, and future outlook
    Oni, Babalola Aisosa
    Bade, Shree Om
    Sanni, Samuel Eshorame
    Orodu, Oyinkepreye David
    JOURNAL OF ENERGY STORAGE, 2025, 107