Artificial intelligence-driven assessment of salt caverns for underground hydrogen storage in Poland

被引:8
|
作者
Derakhshani, Reza [1 ,2 ]
Lankof, Leszek [3 ]
Ghaseminejad, Amin [4 ]
Zaresefat, Mojtaba [5 ]
机构
[1] Univ Utrecht, Dept Earth Sci, Utrecht, Netherlands
[2] Shahid Bahonar Univ Kerman, Dept Geol, Kerman, Iran
[3] Polish Acad Sci, Mineral & Energy Econ Res Inst, Wybickiego 7A, PL-31261 Krakow, Poland
[4] Shahid Bahonar Univ Kerman, Fac Management & Econ, Dept Econ, Kerman, Iran
[5] Univ Utrecht, Copernicus Inst Sustainable Dev, Utrecht, Netherlands
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
MACHINE LEARNING-MODELS; SOLUBILITY; PREDICTION; SHAPE;
D O I
10.1038/s41598-024-64020-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study explores the feasibility of utilizing bedded salt deposits as sites for underground hydrogen storage. We introduce an innovative artificial intelligence framework that applies multi-criteria decision-making and spatial data analysis to identify the most suitable locations for storing hydrogen in salt caverns. Our approach integrates a unified platform with eight distinct machine-learning algorithms-KNN, SVM, LightGBM, XGBoost, MLP, CatBoost, GBR, and MLR-creating rock salt deposit suitability maps for hydrogen storage. The performance of these algorithms was evaluated using various metrics, including Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Correlation Coefficient (R2), compared against an actual dataset. The CatBoost model demonstrated exceptional performance, achieving an R2 of 0.88, MSE of 0.0816, MAE of 0.1994, RMSE of 0.2833, and MAPE of 0.0163. The novel methodology, leveraging advanced machine learning techniques, offers a unique perspective in assessing the potential of underground hydrogen storage. This approach is a valuable asset for various stakeholders, including government bodies, geological services, renewable energy facilities, and the chemical/petrochemical industry, aiding them in identifying optimal locations for hydrogen storage.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Artificial Intelligence-Driven Innovations in Hydrogen Safety
    Patil, Ravindra R.
    Calay, Rajnish Kaur
    Mustafa, Mohamad Y.
    Thakur, Somil
    HYDROGEN, 2024, 5 (02): : 312 - 326
  • [2] Underground hydrogen storage in caverns: Challenges of impure salt structures
    Minougou, Jean Donald
    Gholami, Raoof
    Andersen, Pal
    EARTH-SCIENCE REVIEWS, 2023, 247
  • [3] Salt domes in Poland - Potential sites for hydrogen storage in caverns
    Tarkowski, Radoslaw
    Czapowski, Grzegorz
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (46) : 21414 - 21427
  • [4] Research on the development of cement slurries for underground hydrogen storage in salt caverns
    Kedzierski, Milosz
    Rzepka, Marcin
    NAFTA-GAZ, 2023, (02): : 96 - 105
  • [5] Underground hydrogen storage in salt caverns in the Netherlands - Storage performance and implications for geomechanical stability
    Van Gessel, S. F.
    Groenenberg, R. M.
    Juez-Larre, J.
    Dalman, R. A. F.
    MECHANICAL BEHAVIOR OF SALT X, SALTMECH X 2022, 2022, : 607 - 615
  • [6] Toward Artificial Intelligence-Driven Pathology Assessment for Hematologic Malignancies
    Elemento, Olivier
    BLOOD CANCER DISCOVERY, 2021, 2 (03): : 195 - 197
  • [7] The role of salt caverns in underground gas storage
    Stopa, Jerzy
    Rychlicki, Stanislaw
    Kosowski, Piotr
    GOSPODARKA SUROWCAMI MINERALNYMI-MINERAL RESOURCES MANAGEMENT, 2008, 24 (03): : 11 - 23
  • [8] Preliminary research on the development of cement slurries for underground hydrogen storage in salt caverns
    Kedzierski, Milosz
    Rzepka, Marcin
    NAFTA-GAZ, 2022, (02): : 120 - 127
  • [9] TECHNICAL AND ECONOMIC ISSUES REGARDING THE DEVELOPMENT OF HYDROGEN UNDERGROUND STORAGE IN SALT CAVERNS
    Gheorghe, Adrian
    Iordache, Ioan
    Schitea, Dorin
    Buga, Mihaela
    Iordache, Mihaela
    MANAGEMENT - THE KEY DRIVER FOR CREATING VALUE, 2015, : 82 - 88
  • [10] Comprehensive review of geomechanics of underground hydrogen storage in depleted reservoirs and salt caverns
    Kumar, Kishan Ramesh
    Honorio, Herminio
    Chandra, Debanjan
    Lesueur, Martin
    Hajibeygi, Hadi
    JOURNAL OF ENERGY STORAGE, 2023, 73