m-symmetric Operators with Elementary Operator Entries

被引:0
|
作者
Duggal, B. P. [1 ]
Kim, I. H. [2 ]
机构
[1] Univ Nis, Fac Sci & Math, POB 224, Nish 18000, Serbia
[2] Incheon Natl Univ, Dept Math, Incheon 22012, South Korea
关键词
Banach space; left/right multiplication operator; generalized derivation; elementary (length two) operator; m symmetric operator; compact operator; commutativity property; perturbation by an operator; tensor product;
D O I
10.1007/s00025-024-02272-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given Banach space operators A, B, let delta(A,B) denote the generalised derivation delta(X)=(L-A-R-B)(X)=AX-XB and triangle(A,B) the length two elementary operator triangle(A,B)(X)=(I-LARB)(X)=X-AXB. This note considers the structure of m-symmetric operators delta(m)triangle(A1,B1),triangle(A2,B2 )(I)=(L-triangle A1,L-B1-R-triangle A2,R-B2)(m)(I)=0. It is seen that there exist scalars lambda(i)is an element of sigma a(B-1), 1 <= i <= 2, such that delta(m)lambda(1)A(1),lambda(2)A(2)(I)=0. Translated to Hilbert space operators A and B this implies that if delta(m)triangle(A & lowast;,B)& lowast;,triangle(A,B)(I)=0, then there exists lambda<overline>is an element of sigma a(B & lowast;) such that delta(m)(lambda(A))& lowast;,lambda(A)(I)=0=delta(m)(lambda<overline>B,lambda B)& lowast;(I). We prove that the operator delta(m)triangle(A & lowast;,B)& lowast;,triangle(A,B) is compact if and only if (i) there exists a real number alpha and finite sequnces (i) {aj}j=1n subset of sigma(A), {bj}(j=1)(n)subset of sigma(B) such that ajb(j=1)(-alpha), 1 <= j <= n; (ii) decompositions circle plus(n)(j=1)Hj and circle plus(n)(j=1)HJ of H such that circle plus(j=1)n(A-ajI)| Hj and circle plus(j=1)(n)(B-bjI)|Hj are nilpotent. If delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0 implies delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0, then A and B satisfy a (Putnam-Fuglede type) commutativity theorem; conversely, a sufficient condition for delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0 to imply delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0 is that lambda A and lambda<overline>B satisfy the commutativity property for scalars lambda<overline>is an element of sigma a(B & lowast;). An analogous result is seen to hold for the operators triangle delta(m)(A & lowast;,B & lowast;,delta A,Bm) and triangle delta(m)(A & lowast;,B & lowast;,delta A,Bm)(I). Perturbation by commuting nilpotents is considered.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] A Class of Operators Related to Skew m-Complex Symmetric Operators
    Sid Ahmed Ould Ahmed Mahmoud
    Maawiya Ould Sidi
    Iranian Journal of Science, 2024, 48 : 141 - 150
  • [42] On a Subfamily of q-Starlike Functions with Respect to m-Symmetric Points Associated with the q-Janowski Function
    Gul, Ihtesham
    Al-Sa'di, Sa'ud
    Noor, Khalida Inayat
    Hussain, Saqib
    SYMMETRY-BASEL, 2023, 15 (03):
  • [43] (A, m)-SYMMETRIC COMMUTING TUPLES OF OPERATORS ON A HILBERT SPACE
    Cho, Muneo
    Mahmoud, Sid Ahmed Ould Ahmed
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (03): : 931 - 947
  • [44] ON THE CLASS OF n-QUASI-m-SYMMETRIC OPERATORS
    Djaballah, Souhaib
    Guesba, Messaoud
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2024, 50 (02): : 200 - 212
  • [45] New spaces of matrices with operator entries
    Blasco, Oscar
    Garcia-Bayona, Ismael
    QUAESTIONES MATHEMATICAE, 2020, 43 (5-6) : 651 - 674
  • [46] CANONICAL ALMOST GEODESIC MAPPINGS π2(e), e = ±1, OF SPACES WITH AFFINE CONNECTION ONTO m-SYMMETRIC SPACES
    Berezovski, Volodymyr
    Bacso, Sandor
    Cherevko, Yevhen
    Mikes, Josef
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 93 - 104
  • [47] Structure of elementary operators defining m-left invertible, m-selfadjoint and related classes of operators
    Duggal, B. P.
    Kim, I. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (01)
  • [48] A Criterion for Essential Self-Adjointness of a Symmetric Operator Defined by Some Infinite Hermitian Matrix with Unbounded Entries
    Komorowski, Tomasz
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (02) : 231 - 242
  • [49] M-embedded symmetric operator spaces and the derivation problem
    Huang, Jinghao
    Levitina, Galina
    Sukochev, Fedor
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2020, 169 (03) : 607 - 622
  • [50] A Criterion for Essential Self-Adjointness of a Symmetric Operator Defined by Some Infinite Hermitian Matrix with Unbounded Entries
    Tomasz Komorowski
    Integral Equations and Operator Theory, 2015, 83 : 231 - 242