m-symmetric Operators with Elementary Operator Entries

被引:0
|
作者
Duggal, B. P. [1 ]
Kim, I. H. [2 ]
机构
[1] Univ Nis, Fac Sci & Math, POB 224, Nish 18000, Serbia
[2] Incheon Natl Univ, Dept Math, Incheon 22012, South Korea
关键词
Banach space; left/right multiplication operator; generalized derivation; elementary (length two) operator; m symmetric operator; compact operator; commutativity property; perturbation by an operator; tensor product;
D O I
10.1007/s00025-024-02272-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given Banach space operators A, B, let delta(A,B) denote the generalised derivation delta(X)=(L-A-R-B)(X)=AX-XB and triangle(A,B) the length two elementary operator triangle(A,B)(X)=(I-LARB)(X)=X-AXB. This note considers the structure of m-symmetric operators delta(m)triangle(A1,B1),triangle(A2,B2 )(I)=(L-triangle A1,L-B1-R-triangle A2,R-B2)(m)(I)=0. It is seen that there exist scalars lambda(i)is an element of sigma a(B-1), 1 <= i <= 2, such that delta(m)lambda(1)A(1),lambda(2)A(2)(I)=0. Translated to Hilbert space operators A and B this implies that if delta(m)triangle(A & lowast;,B)& lowast;,triangle(A,B)(I)=0, then there exists lambda<overline>is an element of sigma a(B & lowast;) such that delta(m)(lambda(A))& lowast;,lambda(A)(I)=0=delta(m)(lambda<overline>B,lambda B)& lowast;(I). We prove that the operator delta(m)triangle(A & lowast;,B)& lowast;,triangle(A,B) is compact if and only if (i) there exists a real number alpha and finite sequnces (i) {aj}j=1n subset of sigma(A), {bj}(j=1)(n)subset of sigma(B) such that ajb(j=1)(-alpha), 1 <= j <= n; (ii) decompositions circle plus(n)(j=1)Hj and circle plus(n)(j=1)HJ of H such that circle plus(j=1)n(A-ajI)| Hj and circle plus(j=1)(n)(B-bjI)|Hj are nilpotent. If delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0 implies delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0, then A and B satisfy a (Putnam-Fuglede type) commutativity theorem; conversely, a sufficient condition for delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0 to imply delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0 is that lambda A and lambda<overline>B satisfy the commutativity property for scalars lambda<overline>is an element of sigma a(B & lowast;). An analogous result is seen to hold for the operators triangle delta(m)(A & lowast;,B & lowast;,delta A,Bm) and triangle delta(m)(A & lowast;,B & lowast;,delta A,Bm)(I). Perturbation by commuting nilpotents is considered.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] On [m, C]-symmetric Operators
    Cho, Muneo
    Lee, Ji Eun
    Tanahashi, Kotaro
    Tomiyama, Jun
    KYUNGPOOK MATHEMATICAL JOURNAL, 2018, 58 (04): : 637 - 650
  • [22] On the norm of Jordan elementary operators in standard operator algebras
    Stacho, L
    Zalar, B
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1996, 49 (1-2): : 127 - 134
  • [23] Minimal M-symmetric periodic solutions of general Hamiltonian systems and delay differential equations
    Zhou, Ben-Xing
    Liu, Chungen
    Zhou, Zhan
    Zhang, Xiaofei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 329 : 1 - 30
  • [24] Operator Roots of Polynomials: Iso-Symmetric Operators
    Duggal, B. P.
    Kim, I. H.
    FILOMAT, 2022, 36 (13) : 4539 - 4551
  • [25] On m-Complex Symmetric Operators
    Muneo Chō
    Eungil Ko
    Ji Eun Lee
    Mediterranean Journal of Mathematics, 2016, 13 : 2025 - 2038
  • [26] On (A, m)-Symmetric Operators in a Hilbert Space
    N. Jeridi
    R. Rabaoui
    Results in Mathematics, 2019, 74
  • [27] On matrices with operator entries
    Ljiljana Cvetković
    Djurdjica Takači
    Numerical Algorithms, 2006, 42 : 335 - 344
  • [28] On (A,m)-Symmetric Operators in a Hilbert Space
    Jeridi, N.
    Rabaoui, R.
    RESULTS IN MATHEMATICS, 2019, 74 (03)
  • [29] On m-Complex Symmetric Operators
    Cho, Muneo
    Ko, Eungil
    Lee, Ji Eun
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2025 - 2038
  • [30] On matrices with operator entries
    Cvetkovic, Ljiljana
    Takaci, Djurdjica
    NUMERICAL ALGORITHMS, 2006, 42 (3-4) : 335 - 344