m-symmetric Operators with Elementary Operator Entries

被引:0
|
作者
Duggal, B. P. [1 ]
Kim, I. H. [2 ]
机构
[1] Univ Nis, Fac Sci & Math, POB 224, Nish 18000, Serbia
[2] Incheon Natl Univ, Dept Math, Incheon 22012, South Korea
关键词
Banach space; left/right multiplication operator; generalized derivation; elementary (length two) operator; m symmetric operator; compact operator; commutativity property; perturbation by an operator; tensor product;
D O I
10.1007/s00025-024-02272-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given Banach space operators A, B, let delta(A,B) denote the generalised derivation delta(X)=(L-A-R-B)(X)=AX-XB and triangle(A,B) the length two elementary operator triangle(A,B)(X)=(I-LARB)(X)=X-AXB. This note considers the structure of m-symmetric operators delta(m)triangle(A1,B1),triangle(A2,B2 )(I)=(L-triangle A1,L-B1-R-triangle A2,R-B2)(m)(I)=0. It is seen that there exist scalars lambda(i)is an element of sigma a(B-1), 1 <= i <= 2, such that delta(m)lambda(1)A(1),lambda(2)A(2)(I)=0. Translated to Hilbert space operators A and B this implies that if delta(m)triangle(A & lowast;,B)& lowast;,triangle(A,B)(I)=0, then there exists lambda<overline>is an element of sigma a(B & lowast;) such that delta(m)(lambda(A))& lowast;,lambda(A)(I)=0=delta(m)(lambda<overline>B,lambda B)& lowast;(I). We prove that the operator delta(m)triangle(A & lowast;,B)& lowast;,triangle(A,B) is compact if and only if (i) there exists a real number alpha and finite sequnces (i) {aj}j=1n subset of sigma(A), {bj}(j=1)(n)subset of sigma(B) such that ajb(j=1)(-alpha), 1 <= j <= n; (ii) decompositions circle plus(n)(j=1)Hj and circle plus(n)(j=1)HJ of H such that circle plus(j=1)n(A-ajI)| Hj and circle plus(j=1)(n)(B-bjI)|Hj are nilpotent. If delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0 implies delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0, then A and B satisfy a (Putnam-Fuglede type) commutativity theorem; conversely, a sufficient condition for delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0 to imply delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0 is that lambda A and lambda<overline>B satisfy the commutativity property for scalars lambda<overline>is an element of sigma a(B & lowast;). An analogous result is seen to hold for the operators triangle delta(m)(A & lowast;,B & lowast;,delta A,Bm) and triangle delta(m)(A & lowast;,B & lowast;,delta A,Bm)(I). Perturbation by commuting nilpotents is considered.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Canonical F-Planar Mappings of Spaces with Affine Connection onto m-Symmetric Spaces
    Berezovski, Volodymyr
    Ryparova, Lenka
    Cherevko, Yevhen
    MATHEMATICS, 2023, 11 (05)
  • [32] Elementary operators which are m-isometries
    Gu, Caixing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 451 : 49 - 64
  • [33] Elementary Operators with m-Null Symbols
    Marrero, Isabel
    MATHEMATICS, 2025, 13 (05)
  • [34] The spectral properties of [m]-complex symmetric operators
    Shen, Junli
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [35] Skew m-Complex Symmetric Operators
    Cho, Muneo
    Ko, Eungil
    Lee, Ji Eun
    FILOMAT, 2019, 33 (10) : 2975 - 2983
  • [36] On Skew (A, m)-Symmetric Operators in a Hilbert Space
    Rabaoui, Rchid
    FILOMAT, 2022, 36 (10) : 3261 - 3278
  • [37] On m-Complex Symmetric Operators II
    Cho, Muneo
    Ko, Eungil
    Lee, Ji Eun
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3255 - 3264
  • [38] Totally hereditarily normaloid operators and Weyl's theorem for an elementary operator
    Duggal, BP
    Kubrusly, CS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) : 502 - 513
  • [39] On norm inequalities related to elementary operators in noncommutative fully symmetric spaces
    Han, Yazhou
    Sun, Ruifeng
    Zhao, Xingpeng
    POSITIVITY, 2025, 29 (01)
  • [40] A Class of Operators Related to Skew m-Complex Symmetric Operators
    Mahmoud, Sid Ahmed Ould Ahmed
    Sidi, Maawiya Ould
    IRANIAN JOURNAL OF SCIENCE, 2024, 48 (01) : 141 - 150