m-symmetric Operators with Elementary Operator Entries

被引:0
|
作者
Duggal, B. P. [1 ]
Kim, I. H. [2 ]
机构
[1] Univ Nis, Fac Sci & Math, POB 224, Nish 18000, Serbia
[2] Incheon Natl Univ, Dept Math, Incheon 22012, South Korea
关键词
Banach space; left/right multiplication operator; generalized derivation; elementary (length two) operator; m symmetric operator; compact operator; commutativity property; perturbation by an operator; tensor product;
D O I
10.1007/s00025-024-02272-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given Banach space operators A, B, let delta(A,B) denote the generalised derivation delta(X)=(L-A-R-B)(X)=AX-XB and triangle(A,B) the length two elementary operator triangle(A,B)(X)=(I-LARB)(X)=X-AXB. This note considers the structure of m-symmetric operators delta(m)triangle(A1,B1),triangle(A2,B2 )(I)=(L-triangle A1,L-B1-R-triangle A2,R-B2)(m)(I)=0. It is seen that there exist scalars lambda(i)is an element of sigma a(B-1), 1 <= i <= 2, such that delta(m)lambda(1)A(1),lambda(2)A(2)(I)=0. Translated to Hilbert space operators A and B this implies that if delta(m)triangle(A & lowast;,B)& lowast;,triangle(A,B)(I)=0, then there exists lambda<overline>is an element of sigma a(B & lowast;) such that delta(m)(lambda(A))& lowast;,lambda(A)(I)=0=delta(m)(lambda<overline>B,lambda B)& lowast;(I). We prove that the operator delta(m)triangle(A & lowast;,B)& lowast;,triangle(A,B) is compact if and only if (i) there exists a real number alpha and finite sequnces (i) {aj}j=1n subset of sigma(A), {bj}(j=1)(n)subset of sigma(B) such that ajb(j=1)(-alpha), 1 <= j <= n; (ii) decompositions circle plus(n)(j=1)Hj and circle plus(n)(j=1)HJ of H such that circle plus(j=1)n(A-ajI)| Hj and circle plus(j=1)(n)(B-bjI)|Hj are nilpotent. If delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0 implies delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0, then A and B satisfy a (Putnam-Fuglede type) commutativity theorem; conversely, a sufficient condition for delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0 to imply delta(m)triangle(A & lowast;,B & lowast;,triangle A,B)(I)=0 is that lambda A and lambda<overline>B satisfy the commutativity property for scalars lambda<overline>is an element of sigma a(B & lowast;). An analogous result is seen to hold for the operators triangle delta(m)(A & lowast;,B & lowast;,delta A,Bm) and triangle delta(m)(A & lowast;,B & lowast;,delta A,Bm)(I). Perturbation by commuting nilpotents is considered.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A class of operators related to m-symmetric operators
    Zuo, Fei
    Mecheri, Salah
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (03) : 1300 - 1309
  • [2] Extension of m-Symmetric Hilbert Space Operators
    Alshammari, Hadi Obaid
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [3] On an elementary operator with M-hyponormal operator entries
    Rashid, M. H. M.
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (5-6) : 670 - 679
  • [4] M-SYMMETRIC LATTICES
    PADMANAB.R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (04): : A508 - &
  • [5] M-SYMMETRIC LATTICES
    PADMANAB.R
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1974, 17 (01): : 85 - 86
  • [6] COMPLETION BY CUTS OF AN M-SYMMETRIC LATTICE
    MAEDA, S
    KATO, Y
    PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (5-6): : 356 - 358
  • [7] On m-symmetric d-orthogonal polynomials
    Blel, Mongi
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (1-2) : 19 - 22
  • [8] On an elementary operator with w-hyponormal operator entries
    Cho, M.
    Djordjevic, S. V.
    Duggal, B. P.
    Yamazaki, T.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (11-12) : 2070 - 2079
  • [9] On an Elementary Operator with 2-Isometric Operator Entries
    Shen, Junli
    Ji, Guoxing
    FILOMAT, 2018, 32 (14) : 5083 - 5088
  • [10] Nilpotent perturbations of m-isometric and m-symmetric tensor products of commuting d-tuples of operators
    Duggal, Bhagwati Prashad
    Kim, In Hyoun
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)