On the hyperbolic nonlinear Schrödinger equations

被引:0
|
作者
Saut, Jean-Claude [1 ]
Wang, Yuexun [2 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
关键词
Hyperbolic nonlinear Schr & ouml; dinger equations; Cauchy problem; Global existence; LINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; TRANSVERSE INSTABILITIES; SOLITONS; LIGHT; WAVES; COLLAPSE; PACKETS; PHYSICS; MEDIA;
D O I
10.1186/s13662-024-03811-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here, we consider here Hyperbolic Nonlinear Schr & ouml;dinger Equations (HNLS) that occur as asymptotic models in the modulational regime when the Hessian of the dispersion relation is not positive (or negative) definite. We review classical examples, well-known results, and main open questions.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Orbital Stability of Nonlinear Schrödinger–Kirchhoff Equations
    Enhao Lan
    Mediterranean Journal of Mathematics, 2022, 19
  • [42] Soliton interactions in perturbed nonlinear Schrödinger equations
    Besley, James A.
    Miller, Peter D.
    Akhmediev, Nail N.
    2000, American Physical Society (61): : 7121 - 7133
  • [43] WKB Analysis for Nonlinear Schrödinger Equations with Potential
    Rémi Carles
    Communications in Mathematical Physics, 2007, 269
  • [44] Stability of nonlinear Schrödinger equations on modulation spaces
    Weichao Guo
    Jiecheng Chen
    Frontiers of Mathematics in China, 2014, 9 : 275 - 301
  • [45] Approximate Solutions of Perturbed Nonlinear Schr(?)dinger Equations
    CHENG Xue-Ping(1
    CommunicationsinTheoreticalPhysics, 2007, 48 (08) : 227 - 231
  • [46] Remarks on some systems of nonlinear Schrödinger equations
    Antonio Ambrosetti
    Journal of Fixed Point Theory and Applications, 2008, 4 : 35 - 46
  • [47] Systems of nonlinear Schrödinger equations. A survey
    Ambrosetti, Antonio
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2009, 20 (02): : 99 - 110
  • [48] Stability of solutions for nonlinear Schrdinger equations in critical spaces
    LI Dong1 & ZHANG XiaoYi1
    ScienceChina(Mathematics), 2011, 54 (05) : 973 - 986
  • [49] Global Attractor for a Class of Coupled Nonlinear Schrödinger Equations
    Li G.
    Zhu C.
    SeMA Journal, 2012, 60 (1) : 5 - 25
  • [50] Uniqueness of Solutions to Nonlinear Schrödinger Equations from their Zeros
    Christoph Kehle
    João P. G. Ramos
    Annals of PDE, 2022, 8