On the hyperbolic nonlinear Schrödinger equations

被引:0
|
作者
Saut, Jean-Claude [1 ]
Wang, Yuexun [2 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
关键词
Hyperbolic nonlinear Schr & ouml; dinger equations; Cauchy problem; Global existence; LINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; TRANSVERSE INSTABILITIES; SOLITONS; LIGHT; WAVES; COLLAPSE; PACKETS; PHYSICS; MEDIA;
D O I
10.1186/s13662-024-03811-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here, we consider here Hyperbolic Nonlinear Schr & ouml;dinger Equations (HNLS) that occur as asymptotic models in the modulational regime when the Hessian of the dispersion relation is not positive (or negative) definite. We review classical examples, well-known results, and main open questions.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Hyperbolic Schrödinger equation
    Zheng Z.
    Xuegang Y.
    Advances in Applied Clifford Algebras, 2004, 14 (2) : 207 - 213
  • [22] Standing Waves of the Coupled Nonlinear Schrdinger Equations
    Linlin Yang
    Gongming Wei
    Analysis in Theory and Applications, 2014, 30 (04) : 345 - 353
  • [23] On the new critical exponent for the nonlinear Schrödinger equations
    Nakao Hayashi
    Pavel I. Naumkin
    Nonlinear Differential Equations and Applications NoDEA, 2014, 21 : 415 - 440
  • [24] Dynamics of three nonisospectral nonlinear Schrdinger equations
    Abdselam Silem
    张成
    张大军
    Chinese Physics B, 2019, 28 (02) : 82 - 93
  • [25] Dynamic behavior of solitons in nonlinear Schrödinger equations
    Khater, Mostafa M. A.
    Alfalqi, Suleman H.
    Vokhmintsev, Aleksander
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [26] Remarks on Nonlinear Schrödinger Equations with Harmonic Potential
    R. Carles
    Annales Henri Poincaré, 2002, 3 : 757 - 772
  • [27] Nonlocal Nonlinear Schrödinger Equations as Models of Superfluidity
    N. G. Berloff
    Journal of Low Temperature Physics, 1999, 116 : 359 - 380
  • [28] On Asymptotic Nonlocal Symmetry of Nonlinear Schrödinger Equations
    W. W. Zachary
    V. M. Shtelen
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 417 - 437
  • [29] Gauge transformations for a family of nonlinear schrödinger equations
    Goldin G.A.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (1-2) : 6 - 11
  • [30] On the stochastic nonlinear Schrödinger equations at critical regularities
    Tadahiro Oh
    Mamoru Okamoto
    Stochastics and Partial Differential Equations: Analysis and Computations, 2020, 8 : 869 - 894