On the hyperbolic nonlinear Schrödinger equations

被引:0
|
作者
Saut, Jean-Claude [1 ]
Wang, Yuexun [2 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
关键词
Hyperbolic nonlinear Schr & ouml; dinger equations; Cauchy problem; Global existence; LINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; TRANSVERSE INSTABILITIES; SOLITONS; LIGHT; WAVES; COLLAPSE; PACKETS; PHYSICS; MEDIA;
D O I
10.1186/s13662-024-03811-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here, we consider here Hyperbolic Nonlinear Schr & ouml;dinger Equations (HNLS) that occur as asymptotic models in the modulational regime when the Hessian of the dispersion relation is not positive (or negative) definite. We review classical examples, well-known results, and main open questions.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Normalized solutions for nonlinear Schrödinger equations on graphs
    Yang, Yunyan
    Zhao, Liang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 536 (01)
  • [32] Supercritical Geometric Optics for Nonlinear Schrödinger Equations
    Thomas Alazard
    Rémi Carles
    Archive for Rational Mechanics and Analysis, 2009, 194 : 315 - 347
  • [33] Coupled nonlinear Schrödinger equations with harmonic potential
    Hezzi H.
    Nour M.M.
    Saanouni T.
    Arabian Journal of Mathematics, 2018, 7 (3) : 195 - 218
  • [34] Loss of regularity for supercritical nonlinear Schrödinger equations
    Thomas Alazard
    Rémi Carles
    Mathematische Annalen, 2009, 343 : 397 - 420
  • [35] Bifurcation in a multicomponent system of nonlinear Schrödinger equations
    Thomas Bartsch
    Journal of Fixed Point Theory and Applications, 2013, 13 : 37 - 50
  • [36] Multiplicity of semiclassical solutions to nonlinear Schrödinger equations
    Yanheng Ding
    Juncheng Wei
    Journal of Fixed Point Theory and Applications, 2017, 19 : 987 - 1010
  • [37] On a Hierarchy of Vector Derivative Nonlinear Schrödinger Equations
    Smirnov, Aleksandr O.
    Frolov, Eugene A.
    Dmitrieva, Lada L.
    SYMMETRY-BASEL, 2024, 16 (01):
  • [38] GLOBAL SOLUTIONS FOR A CLASS OF NONLINEAR SCHRDINGER EQUATIONS
    梅茗
    Chinese Science Bulletin, 1991, (18) : 1578 - 1578
  • [39] Šilnikov manifolds in coupled nonlinear Schrödinger equations
    Haller, G.
    Menon, G.
    Rothos, V.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263 (03): : 175 - 185
  • [40] CONCENTRATION OF COUPLED CUBIC NONLINEAR SCHRDINGER EQUATIONS
    李晓光
    张健
    AppliedMathematicsandMechanics(EnglishEdition), 2005, (10) : 117 - 122