On the hyperbolic nonlinear Schrödinger equations

被引:0
|
作者
Saut, Jean-Claude [1 ]
Wang, Yuexun [2 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
关键词
Hyperbolic nonlinear Schr & ouml; dinger equations; Cauchy problem; Global existence; LINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; TRANSVERSE INSTABILITIES; SOLITONS; LIGHT; WAVES; COLLAPSE; PACKETS; PHYSICS; MEDIA;
D O I
10.1186/s13662-024-03811-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here, we consider here Hyperbolic Nonlinear Schr & ouml;dinger Equations (HNLS) that occur as asymptotic models in the modulational regime when the Hessian of the dispersion relation is not positive (or negative) definite. We review classical examples, well-known results, and main open questions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Scattering Theory for Radial Nonlinear Schrödinger Equations on Hyperbolic Space
    Valeria Banica
    Rémi Carles
    Gigliola Staffilani
    Geometric and Functional Analysis, 2008, 18 : 367 - 399
  • [2] On Turbulence in Nonlinear Schrödinger Equations
    S.B. Kuksin
    Geometric and Functional Analysis, 1997, 7 : 783 - 822
  • [3] A system of nonlinear evolution Schrödinger equations
    Sh. M. Nasibov
    Doklady Mathematics, 2007, 76 : 708 - 712
  • [4] Semiclassical States of Nonlinear Schrödinger Equations
    A. Ambrosetti
    M. Badiale
    S. Cingolani
    Archive for Rational Mechanics and Analysis, 1997, 140 : 285 - 300
  • [5] Lagrangian nonlocal nonlinear Schrödinger equations
    Velasco-Juan, M.
    Fujioka, J.
    Chaos, Solitons and Fractals, 2022, 156
  • [6] Hamiltonian formalism for nonlinear Schr?dinger equations
    Pazarci, Ali
    Turhan, Umut Can
    Ghazanfari, Nader
    Gahramanov, Ilmar
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121
  • [7] Global solutions of nonlinear Schrödinger equations
    Martin Schechter
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [8] Choreographies in the discrete nonlinear Schrödinger equations
    Renato Calleja
    Eusebius Doedel
    Carlos García-Azpeitia
    Carlos L. Pando L.
    The European Physical Journal Special Topics, 2018, 227 : 615 - 624
  • [9] On soliton dynamics in nonlinear schrödinger equations
    Zhou Gang
    I. M. Sigal
    Geometric & Functional Analysis GAFA, 2006, 16 : 1377 - 1390
  • [10] Group classification of nonlinear schrödinger equations
    Nikitin A.G.
    Popovych R.O.
    Ukrainian Mathematical Journal, 2001, 53 (8) : 1255 - 1265