Synchronization rates and limit laws for random dynamical systems

被引:0
|
作者
Gelfert, Katrin [1 ]
Salcedo, Graccyela [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21941 Rio De Janeiro, Brazil
[2] Nicolaus Copernicus Univ, Fac Math & Comp Sci, ul Chopina 12-18, PL-87100 Torun, Poland
关键词
Random dynamical systems; Iterated function systems; Local contraction; Synchronization; Strong law of large numbers; Central limit theorem; Law of iterated logarithm; Large deviations of Lyapunov exponents; ITERATED FUNCTION SYSTEMS; INVARIANCE-PRINCIPLE; MARKOV-PROCESSES; THEOREM; LOGARITHM; STABILITY;
D O I
10.1007/s00209-024-03571-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study general random dynamical systems of continuous maps on some compact metricspace. Assuming a local contraction condition and proximality, we establish probabilistic limit laws such as the (functional) central limit theorem, the strong law of large numbers,and the law of the iterated logarithm. Moreover, we study exponential synchronization andsynchronization on average. In the particular case of iterated function systems onS1,we analyze synchronization rates and describe their large deviations. In the case of C1+beta-diffeomorphisms, these deviations on random orbits are obtained from the large deviations of the expected Lyapunov exponent.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] Synchronization of switch dynamical systems
    Danca, MF
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08): : 1813 - 1826
  • [42] A theory for synchronization of dynamical systems
    Luo, Albert Q.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) : 1901 - 1951
  • [43] SYNCHRONIZATION OF NONAUTONOMOUS DYNAMICAL SYSTEMS
    Kloeden, Peter E.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2003,
  • [44] LIMIT LAWS FOR TRANSIENT RANDOM WALKS IN RANDOM ENVIRONMENT ON Z
    Enriquez, Nathanael
    Sabot, Christophe
    Zindy, Olivier
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (06) : 2469 - 2508
  • [45] Limit laws in the generalized random graphs with random vertex weights
    Hu, Zhishui
    Bi, Wei
    Feng, Qunqiang
    STATISTICS & PROBABILITY LETTERS, 2014, 89 : 65 - 76
  • [46] LIMIT LAWS FOR A RANDOM NUMBER OF RECORD VALUES
    FREUDENBERG, W
    SZYNAL, D
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1976, 24 (03): : 193 - 199
  • [47] Random Young towers and quenched limit laws
    Su, Yaofeng
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (03) : 971 - 1003
  • [48] Extremal Limit Laws for Discrete Random Variables
    S. Nadarajah
    K. Mitov
    Journal of Mathematical Sciences, 2004, 122 (4) : 3404 - 3415
  • [49] Limit Laws for Random Spatial Graphical Models
    Anandkumar, Animashree
    Yukich, Joseph
    Willsky, Alan
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1728 - 1732
  • [50] Limit laws for random vectors with an extreme component
    Heffernan, Janet E.
    Resnick, Sidney I.
    ANNALS OF APPLIED PROBABILITY, 2007, 17 (02): : 537 - 571