Random Young towers and quenched limit laws

被引:4
|
作者
Su, Yaofeng [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30318 USA
关键词
Young towers; stochastic stability; quenched invariance principles; SURE INVARIANCE-PRINCIPLE; RATES; THEOREMS;
D O I
10.1017/etds.2021.164
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain quenched almost sure invariance principles (with convergence rates) for random Young towers if the average measure of the tail of return times to the base of random towers decays sufficiently fast. We apply our results to some independent and identically distributed perturbations of some non-uniformly expanding maps. These imply that the random systems under study tend to a Brownian motion under various scalings.
引用
收藏
页码:971 / 1003
页数:33
相关论文
共 50 条
  • [1] Quenched central limit theorems for random walks in random scenery
    Guillotin-Plantard, Nadine
    Poisat, Julien
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (04) : 1348 - 1367
  • [2] Limit laws for sums of random exponentials
    Ben Arous, G
    Bogachev, L
    Molchanov, S
    RECENT DEVELOPMENTS IN STOCHASTIC ANALYSIS AND RELATED TOPICS, 2004, : 45 - 65
  • [3] Limit laws for UGROW random graphs
    Pakes, Anthony G.
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (12) : 2607 - 2614
  • [4] Limit laws for random matrix products
    Emme, Jordan
    Hubert, Pascal
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (04) : 1205 - 1212
  • [5] Weak quenched limit theorems for a random walk in a sparse random environment
    Buraczewski, Dariusz
    Dyszewski, Piotr
    Kolodziejska, Alicja
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [6] THE QUENCHED CENTRAL LIMIT THEOREM FOR A MODEL OF RANDOM WALK IN RANDOM ENVIRONMENT
    Bezborodov, Viktor
    Di Persio, Luca
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (04): : 311 - 316
  • [7] On the quenched central limit theorem for random dynamical systems
    Abdelkader, Mohamed
    Aimino, Romain
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (24)
  • [8] LIMIT LAWS FOR TRANSIENT RANDOM WALKS IN RANDOM ENVIRONMENT ON Z
    Enriquez, Nathanael
    Sabot, Christophe
    Zindy, Olivier
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (06) : 2469 - 2508
  • [9] Limit laws in the generalized random graphs with random vertex weights
    Hu, Zhishui
    Bi, Wei
    Feng, Qunqiang
    STATISTICS & PROBABILITY LETTERS, 2014, 89 : 65 - 76
  • [10] LIMIT LAWS FOR A RANDOM NUMBER OF RECORD VALUES
    FREUDENBERG, W
    SZYNAL, D
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1976, 24 (03): : 193 - 199