Synchronization rates and limit laws for random dynamical systems

被引:0
|
作者
Gelfert, Katrin [1 ]
Salcedo, Graccyela [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21941 Rio De Janeiro, Brazil
[2] Nicolaus Copernicus Univ, Fac Math & Comp Sci, ul Chopina 12-18, PL-87100 Torun, Poland
关键词
Random dynamical systems; Iterated function systems; Local contraction; Synchronization; Strong law of large numbers; Central limit theorem; Law of iterated logarithm; Large deviations of Lyapunov exponents; ITERATED FUNCTION SYSTEMS; INVARIANCE-PRINCIPLE; MARKOV-PROCESSES; THEOREM; LOGARITHM; STABILITY;
D O I
10.1007/s00209-024-03571-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study general random dynamical systems of continuous maps on some compact metricspace. Assuming a local contraction condition and proximality, we establish probabilistic limit laws such as the (functional) central limit theorem, the strong law of large numbers,and the law of the iterated logarithm. Moreover, we study exponential synchronization andsynchronization on average. In the particular case of iterated function systems onS1,we analyze synchronization rates and describe their large deviations. In the case of C1+beta-diffeomorphisms, these deviations on random orbits are obtained from the large deviations of the expected Lyapunov exponent.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Annealed central limit theorem for a class of contractive random dynamical systems
    Maldonado, Cesar
    Loredo, Hugo Nieto
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2025, 31 (02) : 244 - 271
  • [22] A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems
    D. Dragičević
    G. Froyland
    C. González-Tokman
    S. Vaienti
    Communications in Mathematical Physics, 2018, 360 : 1121 - 1187
  • [23] A SPECTRAL APPROACH FOR QUENCHED LIMIT THEOREMS FOR RANDOM HYPERBOLIC DYNAMICAL SYSTEMS
    Dragicevic, D.
    Froyland, G.
    Gonzalez-Tokman, C.
    Vaienti, S.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (01) : 629 - 664
  • [24] Mechanism of synchronization in a random dynamical system
    Hwang, DU
    Kim, I
    Rim, S
    Kim, CM
    Park, YJ
    PHYSICAL REVIEW E, 2001, 64 (03): : 8 - 362198
  • [25] A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems
    Dragicevic, Davor
    Froyland, G.
    Gonzalez-Tokman, C.
    Vaienti, S.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 360 (03) : 1121 - 1187
  • [26] Limit laws for sums of random exponentials
    Ben Arous, G
    Bogachev, L
    Molchanov, S
    RECENT DEVELOPMENTS IN STOCHASTIC ANALYSIS AND RELATED TOPICS, 2004, : 45 - 65
  • [27] Limit laws for UGROW random graphs
    Pakes, Anthony G.
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (12) : 2607 - 2614
  • [28] Limit laws for random matrix products
    Emme, Jordan
    Hubert, Pascal
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (04) : 1205 - 1212
  • [29] FAST OSCILLATING RANDOM PERTURBATIONS OF DYNAMICAL-SYSTEMS WITH CONSERVATION-LAWS
    BORODIN, AN
    FREIDLIN, MI
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1995, 31 (03): : 485 - 525
  • [30] Synchronization in Discrete-Time, Discrete-State Random Dynamical Systems
    Huang, Wen
    Qian, Hong
    Wang, Shirou
    Ye, Felix X-F
    Yi, Yingfei
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (01): : 233 - 251